Pronóstico promedio móvil simple de 3 periodos

Pronóstico promedio móvil simple de 3 periodos

Jugadores en el mercado de divisas
Nosotros el tiempo de comercio de divisas
Is_binary_options_illegal_in_the_us


Opciones de acciones de empleados de Csc Club de la divisa 500 Ejercicio de opciones sobre acciones antes de ipo Opciones de stock de flujo de efectivo No_risk_option_trading Sistema libre del comercio del caballo

Moving Average Forecasting Introducción. Como usted podría adivinar, estamos estudiando algunos de los enfoques más primitivos para la predicción. Pero espero que estas sean al menos una introducción valiosa a algunos de los problemas de computación relacionados con la implementación de pronósticos en hojas de cálculo. En este sentido, continuaremos comenzando desde el principio y comenzando a trabajar con las previsiones de Media móvil. Pronósticos de media móvil. Todo el mundo está familiarizado con los pronósticos de promedio móvil, independientemente de si creen que son. Todos los estudiantes universitarios lo hacen todo el tiempo. Piense en los resultados de su examen en un curso en el que va a tener cuatro pruebas durante el semestre. Supongamos que tienes un 85 en tu primera prueba. ¿Qué predecirías para tu segundo puntaje de prueba? ¿Qué crees que tu maestro predijo para tu siguiente puntaje de prueba? ¿Qué crees que tus amigos podrían predecir para tu siguiente puntaje de prueba? ¿Qué crees que tus padres podrían predecir para tu próximo puntaje de prueba? Todo el blabbing que usted puede hacer a sus amigos y padres, él y su profesor son muy probables esperar que usted consiga algo en el área de los 85 que usted acaba de conseguir. Bueno, ahora vamos a suponer que a pesar de su autopromoción a sus amigos, usted se sobreestimar y la figura que puede estudiar menos para la segunda prueba y por lo que se obtiene un 73. Ahora lo que todos los interesados ​​y despreocupado va a Anticipar que usted conseguirá en su tercer examen Hay dos acercamientos muy probables para que desarrollen una estimación sin importar si lo compartirán con usted. Pueden decir a sí mismos: "Este tipo siempre está soplando el humo de su inteligencia. Hes va a conseguir otro 73 si hes suerte. Tal vez los padres tratarán de ser más solidarios y decir: "Bueno, hasta ahora has conseguido un 85 y un 73, por lo que tal vez debería figura en obtener sobre un (85 73) / 2 79. No sé, tal vez si usted hizo menos Fiesta y werent meneando la comadreja en todo el lugar y si comenzó a hacer mucho más estudiando que podría obtener una puntuación más alta.quot Ambos de estos estimados son en realidad las previsiones de promedio móvil. El primero es usar sólo su puntaje más reciente para pronosticar su rendimiento futuro. Esto se denomina pronóstico de media móvil utilizando un período de datos. El segundo es también un pronóstico de media móvil, pero utilizando dos períodos de datos. Vamos a asumir que todas estas personas estallando en su gran mente tienen tipo de molesto y usted decide hacer bien en la tercera prueba por sus propias razones y poner una puntuación más alta en frente de sus quotalliesquot. Usted toma la prueba y su puntuación es en realidad un 89 Todos, incluido usted mismo, está impresionado. Así que ahora tiene la prueba final del semestre que viene y como de costumbre se siente la necesidad de incitar a todos a hacer sus predicciones acerca de cómo youll hacer en la última prueba. Bueno, espero que veas el patrón. Ahora, espero que puedas ver el patrón. ¿Cuál crees que es el silbido más preciso mientras trabajamos? Ahora volvemos a nuestra nueva compañía de limpieza iniciada por su hermana separada llamada Whistle While We Work. Tiene algunos datos de ventas anteriores representados en la siguiente sección de una hoja de cálculo. Primero presentamos los datos para un pronóstico de media móvil de tres periodos. La entrada para la celda C6 debe ser Ahora puede copiar esta fórmula de celda abajo a las otras celdas C7 a C11. Observe cómo el promedio se mueve sobre los datos históricos más recientes, pero utiliza exactamente los tres períodos más recientes disponibles para cada predicción. También debe notar que realmente no necesitamos hacer las predicciones para los períodos pasados ​​con el fin de desarrollar nuestra predicción más reciente. Esto es definitivamente diferente del modelo de suavizado exponencial. He incluido las predicciones anteriores porque las usaremos en la siguiente página web para medir la validez de la predicción. Ahora quiero presentar los resultados análogos para un pronóstico de media móvil de dos periodos. La entrada para la celda C5 debe ser Ahora puede copiar esta fórmula de celda abajo a las otras celdas C6 a C11. Observe cómo ahora sólo se usan las dos más recientes piezas de datos históricos para cada predicción. Nuevamente he incluido las predicciones anteriores para fines ilustrativos y para uso posterior en la validación de pronósticos. Algunas otras cosas que son importantes de notar. Para una predicción de promedio móvil del período m sólo se usan los m valores de datos más recientes para hacer la predicción. Nada más es necesario. Para una predicción media móvil del período m, al hacer predicciones quotpast, observe que la primera predicción ocurre en el período m 1. Ambas cuestiones serán muy significativas cuando desarrollemos nuestro código. Desarrollo de la función de media móvil. Ahora necesitamos desarrollar el código para el pronóstico del promedio móvil que se puede usar con más flexibilidad. El código sigue. Observe que las entradas son para el número de períodos que desea utilizar en el pronóstico y la matriz de valores históricos. Puede guardarlo en cualquier libro que desee. Función MovingAverage (Histórica, NumberOfPeriods) Como única Declaración e inicialización de variables Dim Item como variante Dim Contador como Entero Dim Acumulación como único Dim HistoricalSize As Entero Inicialización de variables Counter 1 Acumulación 0 Determinación del tamaño del historial HistoricalSize Historical.Count For Counter 1 To NumberOfPeriods Acumulación del número apropiado de los valores observados anteriormente más recientes Acumulación Acumulación Histórica (HistoricalSize - NumberOfPeriods Counter) MovingAverage Acumulación / NumberOfPeriods El código se explicará en la clase. Desea posicionar la función en la hoja de cálculo para que el resultado de la computación aparezca en el lugar en el que debería tener gusto de lo siguiente. Modelos de media móvil y de suavizado exponencial Como primer paso para ir más allá de los modelos de media, aleatoria y lineal, no estacional Patrones y tendencias pueden ser extrapolados utilizando un modelo de media móvil o suavizado. La suposición básica detrás de los modelos de promedio y suavizado es que la serie temporal es localmente estacionaria con una media que varía lentamente. Por lo tanto, tomamos un promedio móvil (local) para estimar el valor actual de la media y luego usarlo como pronóstico para el futuro cercano. Esto puede considerarse como un compromiso entre el modelo medio y el modelo aleatorio-paseo-sin-deriva. La misma estrategia se puede utilizar para estimar y extrapolar una tendencia local. Una media móvil se denomina a menudo una versión quotomoldeada de la serie original porque el promedio de corto plazo tiene el efecto de suavizar los golpes en la serie original. Al ajustar el grado de suavizado (el ancho de la media móvil), podemos esperar encontrar algún tipo de equilibrio óptimo entre el rendimiento de la media y los modelos de caminata aleatoria. El tipo más simple de modelo de promediación es el. Promedio móvil simple (igualmente ponderado): El pronóstico para el valor de Y en el tiempo t1 que se hace en el tiempo t es igual al promedio simple de las observaciones m más recientes: (Aquí y en otro lugar usaré el símbolo 8220Y-hat8221 para permanecer Para un pronóstico de la serie de tiempo Y hecho a la fecha más temprana posible posible por un modelo dado). Este promedio se centra en el período t (m1) / 2, lo que implica que la estimación de la media local tiende a quedar rezagada detrás del Valor real de la media local de aproximadamente (m1) / 2 periodos. Por lo tanto, decimos que la edad media de los datos en el promedio móvil simple es (m1) / 2 en relación con el período para el cual se calcula el pronóstico: es la cantidad de tiempo que las previsiones tienden a rezagarse detrás de los puntos de inflexión en el datos. Por ejemplo, si está promediando los últimos 5 valores, las previsiones serán de aproximadamente 3 períodos tarde en la respuesta a los puntos de inflexión. Tenga en cuenta que si m1, el modelo de media móvil simple (SMA) es equivalente al modelo de caminata aleatoria (sin crecimiento). Si m es muy grande (comparable a la longitud del período de estimación), el modelo SMA es equivalente al modelo medio. Como con cualquier parámetro de un modelo de pronóstico, es habitual ajustar el valor de k para obtener el mejor valor de los datos, es decir, los errores de predicción más pequeños en promedio. He aquí un ejemplo de una serie que parece presentar fluctuaciones aleatorias alrededor de una media de variación lenta. En primer lugar, vamos a tratar de encajar con un modelo de caminata al azar, que es equivalente a una media móvil simple de un término: El modelo de caminata aleatoria responde muy rápidamente a los cambios en la serie, pero al hacerlo, recoge gran parte del quotnoisequot en el Los datos (las fluctuaciones aleatorias), así como el quotsignalquot (la media local). Si en lugar de eso intentamos una media móvil simple de 5 términos, obtendremos un conjunto de previsiones más suaves: El promedio móvil simple a 5 terminos produce errores significativamente menores que el modelo de caminata aleatoria en este caso. La edad promedio de los datos de esta previsión es de 3 ((51) / 2), de manera que tiende a quedar a la zaga de los puntos de inflexión en aproximadamente tres períodos. (Por ejemplo, parece haber ocurrido una recesión en el período 21, pero las previsiones no giran hasta varios periodos más tarde). Obsérvese que los pronósticos a largo plazo del modelo SMA son una línea recta horizontal, al igual que en la caminata aleatoria modelo. Por lo tanto, el modelo SMA asume que no hay tendencia en los datos. Sin embargo, mientras que las previsiones del modelo de caminata aleatoria son simplemente iguales al último valor observado, las previsiones del modelo SMA son iguales a un promedio ponderado de valores recientes. Los límites de confianza calculados por Statgraphics para los pronósticos a largo plazo de la media móvil simple no se amplían a medida que aumenta el horizonte de pronóstico. Esto obviamente no es correcto Desafortunadamente, no hay una teoría estadística subyacente que nos diga cómo los intervalos de confianza deberían ampliarse para este modelo. Sin embargo, no es demasiado difícil calcular estimaciones empíricas de los límites de confianza para las previsiones a más largo plazo. Por ejemplo, podría configurar una hoja de cálculo en la que el modelo SMA se utilizaría para pronosticar dos pasos adelante, tres pasos adelante, etc. dentro de la muestra de datos históricos. A continuación, podría calcular las desviaciones estándar de los errores en cada horizonte de pronóstico y, a continuación, construir intervalos de confianza para pronósticos a más largo plazo sumando y restando múltiplos de la desviación estándar apropiada. Si intentamos una media móvil sencilla de 9 términos, obtendremos pronósticos aún más suaves y más de un efecto rezagado: La edad promedio es ahora de 5 períodos ((91) / 2). Si tomamos una media móvil de 19 términos, la edad promedio aumenta a 10: Obsérvese que, de hecho, las previsiones están ahora rezagadas detrás de los puntos de inflexión en aproximadamente 10 períodos. Qué cantidad de suavizado es la mejor para esta serie Aquí hay una tabla que compara sus estadísticas de error, incluyendo también un promedio de 3 términos: El modelo C, la media móvil de 5 términos, produce el valor más bajo de RMSE por un pequeño margen sobre los 3 A término y 9 promedios, y sus otras estadísticas son casi idénticas. Por lo tanto, entre los modelos con estadísticas de error muy similares, podemos elegir si preferiríamos un poco más de capacidad de respuesta o un poco más de suavidad en las previsiones. El modelo de media móvil simple descrito anteriormente tiene la propiedad indeseable de que trata las últimas k observaciones por igual e ignora por completo todas las observaciones precedentes. (Volver al principio de la página.) Browns Simple Exponential Smoothing Intuitivamente, los datos pasados ​​deben ser descontados de una manera más gradual - por ejemplo, la observación más reciente debería tener un poco más de peso que la segunda más reciente, y la segunda más reciente debería tener un poco más de peso que la tercera más reciente, y pronto. El modelo de suavizado exponencial simple (SES) lo logra. Sea 945 una constante quotsmoothingquot (un número entre 0 y 1). Una forma de escribir el modelo es definir una serie L que represente el nivel actual (es decir, el valor medio local) de la serie, tal como se estimó a partir de los datos hasta el presente. El valor de L en el tiempo t se calcula recursivamente a partir de su propio valor anterior como este: Así, el valor suavizado actual es una interpolación entre el valor suavizado anterior y la observación actual, donde 945 controla la proximidad del valor interpolado al valor más reciente observación. El pronóstico para el siguiente período es simplemente el valor suavizado actual: Equivalentemente, podemos expresar el próximo pronóstico directamente en términos de previsiones anteriores y observaciones previas, en cualquiera de las siguientes versiones equivalentes. En la primera versión, la previsión es una interpolación entre la previsión anterior y la observación anterior: En la segunda versión, la siguiente previsión se obtiene ajustando la previsión anterior en la dirección del error anterior por una cantidad fraccionada de 945. es el error hecho en Tiempo t En la tercera versión, el pronóstico es una media móvil exponencialmente ponderada (es decir, descontada) con factor de descuento 1-945: La versión de interpolación de la fórmula de pronóstico es la más simple de usar si está implementando el modelo en una hoja de cálculo: se ajusta en un Célula única y contiene referencias de celdas que apuntan a la previsión anterior, la observación anterior y la celda donde se almacena el valor de 945. Tenga en cuenta que si 945 1, el modelo SES es equivalente a un modelo de caminata aleatoria (sin crecimiento). Si 945 0, el modelo SES es equivalente al modelo medio, asumiendo que el primer valor suavizado se establece igual a la media. La edad promedio de los datos en el pronóstico de suavización exponencial simple es de 1/945 en relación con el período para el cual se calcula la predicción. (Esto no se supone que sea obvio, pero se puede demostrar fácilmente mediante la evaluación de una serie infinita.) Por lo tanto, el pronóstico promedio móvil simple tiende a quedar rezagado detrás de puntos de inflexión en aproximadamente 1/945 períodos. Por ejemplo, cuando 945 0.5 el retraso es 2 períodos cuando 945 0.2 el retraso es 5 períodos cuando 945 0.1 el retraso es 10 períodos, y así sucesivamente. Para una edad media dada (es decir, la cantidad de retraso), el simple suavizado exponencial (SES) pronosticado es algo superior al pronóstico de la media móvil simple (SMA) porque coloca relativamente más peso en la observación más reciente - i.e. Es un poco más sensible a los cambios ocurridos en el pasado reciente. Por ejemplo, un modelo SMA con 9 términos y un modelo SES con 945 0.2 tienen una edad promedio de 5 para los datos de sus pronósticos, pero el modelo SES pone más peso en los 3 últimos valores que el modelo SMA y en el modelo SMA. Otra ventaja importante del modelo SES sobre el modelo SMA es que el modelo SES utiliza un parámetro de suavizado que es variable continuamente, por lo que puede optimizarse fácilmente Utilizando un algoritmo quotsolverquot para minimizar el error cuadrático medio. El valor óptimo de 945 en el modelo SES para esta serie resulta ser 0.2961, como se muestra aquí: La edad promedio de los datos de esta previsión es de 1 / 0.2961 3.4 períodos, que es similar a la de un 6-término de movimiento simple promedio. Los pronósticos a largo plazo del modelo SES son una línea recta horizontal. Como en el modelo SMA y el modelo de caminata aleatoria sin crecimiento. Sin embargo, tenga en cuenta que los intervalos de confianza calculados por Statgraphics ahora divergen de manera razonable y que son sustancialmente más estrechos que los intervalos de confianza para el modelo de caminata aleatoria. El modelo SES asume que la serie es algo más predecible que el modelo de caminata aleatoria. Un modelo SES es en realidad un caso especial de un modelo ARIMA. Por lo que la teoría estadística de los modelos ARIMA proporciona una base sólida para el cálculo de los intervalos de confianza para el modelo SES. En particular, un modelo SES es un modelo ARIMA con una diferencia no estacional, un término MA (1) y ningún término constante. Conocido también como modelo quotARIMA (0,1,1) sin constantequot. El coeficiente MA (1) en el modelo ARIMA corresponde a la cantidad 1-945 en el modelo SES. Por ejemplo, si se ajusta un modelo ARIMA (0,1,1) sin constante a la serie analizada aquí, el coeficiente MA estimado (1) resulta ser 0.7029, que es casi exactamente un menos 0.2961. Es posible añadir la suposición de una tendencia lineal constante no nula a un modelo SES. Para ello, basta con especificar un modelo ARIMA con una diferencia no estacional y un término MA (1) con una constante, es decir, un modelo ARIMA (0,1,1) con constante. Las previsiones a largo plazo tendrán entonces una tendencia que es igual a la tendencia media observada durante todo el período de estimación. No puede hacerlo junto con el ajuste estacional, ya que las opciones de ajuste estacional están deshabilitadas cuando el tipo de modelo está ajustado a ARIMA. Sin embargo, puede agregar una tendencia exponencial a largo plazo constante a un modelo de suavización exponencial simple (con o sin ajuste estacional) utilizando la opción de ajuste de inflación en el procedimiento de previsión. La tasa apropiada de inflación (crecimiento porcentual) por período puede estimarse como el coeficiente de pendiente en un modelo de tendencia lineal ajustado a los datos en conjunción con una transformación de logaritmo natural o puede basarse en otra información independiente sobre las perspectivas de crecimiento a largo plazo . (Regreso al inicio de la página.) Browns Linear (es decir, doble) Suavizado exponencial Los modelos SMA y SES suponen que no hay ninguna tendencia de ningún tipo en los datos (que normalmente está bien o al menos no es demasiado malo para 1- Avance anticipado cuando los datos son relativamente ruidosos), y se pueden modificar para incorporar una tendencia lineal constante como se muestra arriba. ¿Qué pasa con las tendencias a corto plazo? Si una serie muestra una tasa de crecimiento variable o un patrón cíclico que se destaca claramente contra el ruido, y si hay una necesidad de pronosticar más de un período, la estimación de una tendencia local también podría ser un problema. El modelo de suavizado exponencial simple puede ser generalizado para obtener un modelo lineal de suavizado exponencial (LES) que calcula las estimaciones locales de nivel y tendencia. El modelo de tendencia más simple que varía en función del tiempo es el modelo lineal de suavizado exponencial de Browns, que utiliza dos series suavizadas diferentes centradas en diferentes momentos del tiempo. La fórmula de predicción se basa en una extrapolación de una línea a través de los dos centros. (Una versión más sofisticada de este modelo, Holt8217s, se discute a continuación). La forma algebraica del modelo de suavizado exponencial lineal de Brown8217s, como la del modelo de suavizado exponencial simple, puede expresarse en un número de formas diferentes pero equivalentes. La forma estándar de este modelo se expresa usualmente de la siguiente manera: Sea S la serie de suavizado simple obtenida aplicando el suavizado exponencial simple a la serie Y. Es decir, el valor de S en el periodo t está dado por: (Recuérdese que, Exponencial, esto sería la previsión para Y en el período t1). Entonces, vamos a Squot denotar la serie doblemente suavizada obtenida aplicando el suavizado exponencial simple (usando el mismo 945) a la serie S: Finalmente, la previsión para Y tk. Para cualquier kgt1, viene dado por: Esto produce e 1 0 (es decir, trucar un poco y dejar que el primer pronóstico sea igual a la primera observación real), y e 2 Y 2 8211 Y 1. Después de lo cual las previsiones se generan usando la ecuación anterior. Esto produce los mismos valores ajustados que la fórmula basada en S y S si estos últimos se iniciaron usando S 1 S 1 Y 1. Esta versión del modelo se utiliza en la página siguiente que ilustra una combinación de suavizado exponencial con ajuste estacional. Holt8217s Linear Exponential Smoothing Brown8217s El modelo LES calcula las estimaciones locales de nivel y tendencia al suavizar los datos recientes, pero el hecho de que lo haga con un solo parámetro de suavizado impone una restricción en los patrones de datos que puede encajar: el nivel y la tendencia No se les permite variar a tasas independientes. El modelo LES de Holt8217s aborda esta cuestión incluyendo dos constantes de suavizado, una para el nivel y otra para la tendencia. En cualquier momento t, como en el modelo Brown8217s, existe una estimación L t del nivel local y una estimación T t de la tendencia local. Aquí se calculan recursivamente a partir del valor de Y observado en el instante t y de las estimaciones previas del nivel y de la tendencia por dos ecuaciones que les aplican el suavizado exponencial separadamente. Si el nivel estimado y la tendencia en el tiempo t-1 son L t82091 y T t-1. Respectivamente, entonces la previsión de Y tshy que habría sido hecha en el tiempo t-1 es igual a L t-1 T t-1. Cuando se observa el valor real, la estimación actualizada del nivel se calcula recursivamente interpolando entre Y tshy y su pronóstico, L t-1 T t-1, utilizando pesos de 945 y 1-945. El cambio en el nivel estimado, Es decir L t 8209 L t82091. Puede interpretarse como una medición ruidosa de la tendencia en el tiempo t. La estimación actualizada de la tendencia se calcula recursivamente mediante la interpolación entre L t 8209 L t82091 y la estimación anterior de la tendencia, T t-1. Utilizando los pesos de 946 y 1-946: La interpretación de la constante de suavizado de tendencia 946 es análoga a la de la constante de suavizado de nivel 945. Los modelos con valores pequeños de 946 asumen que la tendencia cambia muy lentamente con el tiempo, mientras que los modelos con 946 más grandes suponen que está cambiando más rápidamente. Un modelo con una gran 946 cree que el futuro lejano es muy incierto, porque los errores en la estimación de la tendencia son muy importantes cuando se pronostica más de un período por delante. Las constantes de suavizado 945 y 946 se pueden estimar de la manera habitual minimizando el error cuadrático medio de los pronósticos de 1 paso adelante. Cuando esto se hace en Statgraphics, las estimaciones resultan ser 945 0,3048 y 946 0,008. El valor muy pequeño de 946 significa que el modelo supone muy poco cambio en la tendencia de un período al siguiente, por lo que básicamente este modelo está tratando de estimar una tendencia a largo plazo. Por analogía con la noción de la edad media de los datos que se utilizan para estimar el nivel local de la serie, la edad media de los datos que se utilizan para estimar la tendencia local es proporcional a 1/946, aunque no exactamente igual a eso. En este caso, resulta ser 1 / 0.006 125. Esto no es un número muy preciso en la medida en que la precisión de la estimación de 946 es realmente de 3 decimales, pero es del mismo orden general de magnitud que el tamaño de la muestra de 100 , Por lo que este modelo está promediando bastante historia en la estimación de la tendencia. La gráfica de pronóstico siguiente muestra que el modelo LES calcula una tendencia local ligeramente mayor al final de la serie que la tendencia constante estimada en el modelo SEStrend. Además, el valor estimado de 945 es casi idéntico al obtenido ajustando el modelo SES con o sin tendencia, por lo que este es casi el mismo modelo. Ahora, ¿se ven como pronósticos razonables para un modelo que se supone que está estimando una tendencia local? Si observas esta gráfica, parece que la tendencia local se ha vuelto hacia abajo al final de la serie. Lo que ha sucedido Los parámetros de este modelo Se han estimado minimizando el error al cuadrado de las previsiones de un paso adelante, y no las previsiones a largo plazo, en cuyo caso la tendencia no hace mucha diferencia. Si todo lo que usted está mirando son errores de un paso adelante, no está viendo la imagen más grande de las tendencias sobre (digamos) 10 o 20 períodos. Con el fin de obtener este modelo más en sintonía con la extrapolación de nuestro ojo de los datos, podemos ajustar manualmente la tendencia de suavizado constante de modo que utiliza una base más corta para la estimación de tendencia. Por ejemplo, si elegimos establecer 946 0.1, la edad promedio de los datos utilizados para estimar la tendencia local es de 10 períodos, lo que significa que estamos promediando la tendencia en los últimos 20 períodos aproximadamente. Here8217s lo que el pronóstico gráfico parece si fijamos 946 0.1 mientras que mantener 945 0.3. Esto parece intuitivamente razonable para esta serie, aunque probablemente sea peligroso extrapolar esta tendencia en más de 10 periodos en el futuro. ¿Qué pasa con las estadísticas de errores? Aquí hay una comparación de modelos para los dos modelos mostrados arriba, así como tres modelos SES. El valor óptimo de 945 para el modelo SES es de aproximadamente 0,3, pero se obtienen resultados similares (con un poco más o menos de capacidad de respuesta, respectivamente) con 0,5 y 0,2. (A) Holts lineal exp. Alisamiento con alfa 0.3048 y beta 0.008 (B) Holts linear exp. Alisamiento con alfa 0.3 y beta 0.1 (C) Suavizado exponencial simple con alfa 0.5 (D) Alisamiento exponencial simple con alfa 0.3 (E) Suavizado exponencial simple con alfa 0.2 Sus estadísticas son casi idénticas, por lo que realmente no podemos hacer la elección sobre la base De errores de pronóstico de un paso adelante en la muestra de datos. Tenemos que recurrir a otras consideraciones. Si creemos firmemente que tiene sentido basar la estimación de tendencia actual en lo que ha ocurrido durante los últimos 20 períodos, podemos hacer un caso para el modelo LES con 945 0.3 y 946 0.1. Si queremos ser agnósticos acerca de si hay una tendencia local, entonces uno de los modelos SES podría ser más fácil de explicar y también daría más pronósticos intermedios para los próximos 5 o 10 períodos. (Volver al principio de la página.) Qué tipo de tendencia-extrapolación es la mejor: horizontal o lineal La evidencia empírica sugiere que, si los datos ya han sido ajustados (si es necesario) para la inflación, puede ser imprudente extrapolar lineal a corto plazo Tendencias en el futuro. Las tendencias evidentes hoy en día pueden desacelerarse en el futuro debido a diversas causas, como la obsolescencia de los productos, el aumento de la competencia y las caídas o repuntes cíclicos en una industria. Por esta razón, el suavizado exponencial simple a menudo realiza mejor fuera de la muestra de lo que de otra manera podría esperarse, a pesar de su extrapolación horizontal de tendencia horizontal. Las modificaciones de la tendencia amortiguada del modelo de suavizado exponencial lineal también se usan a menudo en la práctica para introducir una nota de conservadurismo en sus proyecciones de tendencia. El modelo LES con tendencia amortiguada se puede implementar como un caso especial de un modelo ARIMA, en particular, un modelo ARIMA (1,1,2). Es posible calcular intervalos de confianza en torno a los pronósticos a largo plazo producidos por modelos de suavizado exponencial, al considerarlos como casos especiales de modelos ARIMA. El ancho de los intervalos de confianza depende de (i) el error RMS del modelo, (ii) el tipo de suavizado (simple o lineal) (iii) el valor (S) de la (s) constante (s) de suavizado y (iv) el número de periodos por delante que está pronosticando. En general, los intervalos se extienden más rápido a medida que 945 se hace más grande en el modelo SES y se extienden mucho más rápido cuando se usa lineal en lugar de simple suavizado. Este tema se discute más adelante en la sección de modelos de ARIMA de las notas. El enfoque más simple sería tomar el promedio de enero a marzo y utilizarlo para estimar las ventas de abril de 1982: (129 134 122) / 3 128.333 Por lo tanto, en base a las ventas de enero a marzo, usted predice Que las ventas en abril serán 128.333. Una vez que las ventas reales de abril de 2008 lleguen, se calcula el pronóstico para mayo, esta vez utilizando febrero a abril. Debe ser consistente con el número de periodos que usa para pronosticar el promedio móvil. El número de períodos que usa en sus pronósticos de media móvil es arbitrario, puede usar sólo dos períodos o cinco o seis períodos, lo que desee para generar sus pronósticos. El enfoque anterior es un promedio móvil simple. A veces, los últimos meses 8217 las ventas pueden ser influenciadores más fuertes de las ventas del próximo mes 8217s, por lo que desea dar a los meses más cercanos más peso en su modelo de pronóstico. Esta es una media móvil ponderada. Y al igual que el número de períodos, los pesos asignados son puramente arbitrarios. Let8217s decir que quería dar las ventas de March8217s 50 peso, febrero8217s 30 peso, y January8217s 20. Entonces su pronóstico para abril será 127,000 (122,50) (134,30) (129,20) 127. Limitaciones de los métodos de media móvil Las medias móviles se consideran una técnica de pronóstico 8220smoothing8221. Debido a que usted está tomando un promedio en el tiempo, está suavizando (o suavizando) los efectos de las ocurrencias irregulares dentro de los datos. Como resultado, los efectos de la estacionalidad, los ciclos económicos y otros eventos aleatorios pueden aumentar drásticamente el error de pronóstico. Echa un vistazo a un año completo de 8217s de datos, y comparar una media móvil de 3 períodos y una media móvil de 5 periodos: Tenga en cuenta que en este caso que no he creado pronósticos, sino más bien centrado los promedios móviles. El primer promedio móvil de 3 meses es para febrero, y es el promedio de enero, febrero y marzo. También hice similar para el promedio de 5 meses. Ahora eche un vistazo a la siguiente tabla: ¿Qué es lo que ves? No es la serie de media móvil de tres meses mucho más suave que la serie de ventas reales Y cómo sobre el promedio móvil de cinco meses It8217s aún más suave. Por lo tanto, los periodos más que utiliza en su promedio móvil, el suavizar su serie de tiempo. Por lo tanto, para pronosticar, un promedio móvil simple puede no ser el método más exacto. Los métodos de media móvil resultan bastante valiosos cuando se trata de extraer los componentes estacionales, irregulares y cíclicos de una serie temporal para métodos de pronóstico más avanzados, como regresión y ARIMA, y el uso de promedios móviles en la descomposición de una serie temporal se tratará más adelante en las series. Determinación de la precisión de un modelo de media móvil En general, desea un método de pronóstico que tenga el menor error entre los resultados reales y los previstos. Una de las medidas más comunes de exactitud de pronóstico es la Media Desviación Absoluta (MAD). En este enfoque, para cada período de la serie temporal para la que generó un pronóstico, se toma el valor absoluto de la diferencia entre los valores actuales y previstos de ese período (la desviación). Entonces usted promedio esas desviaciones absolutas y usted consigue una medida de MAD. MAD puede ser útil para decidir el número de períodos que usted promedio, y / o la cantidad de peso que usted coloca en cada período. Generalmente, usted escoge el que da como resultado el MAD más bajo. A continuación se muestra un ejemplo de cómo se calcula MAD: MAD es simplemente el promedio de 8, 1 y 3. Promedios móviles: recapitulación Cuando se usan promedios móviles para pronosticar, recuerde: Las medias móviles pueden ser simples o ponderadas. Promedio y cualquier peso que usted asigna a cada uno son estrictamente arbitrarios Medias móviles suavizar los patrones irregulares en los datos de series de tiempo cuanto mayor sea el número de períodos utilizados para cada punto de datos, mayor será el efecto de suavizado Debido a suavizar, Las últimas pocas ventas de mes 8217 pueden resultar en grandes desviaciones debido a la estacionalidad, ciclos y patrones irregulares en los datos y Las capacidades de suavizado de un método de media móvil pueden ser útiles para descomponer una serie de tiempo para métodos de pronóstico más avanzados. Semana siguiente: Exponential Smoothing En la próxima semana 8217s Pronóstico Viernes. Vamos a discutir los métodos de suavizado exponencial, y verá que pueden ser muy superiores a los métodos de pronóstico promedio móvil. Todavía don8217t saber por qué nuestro pronóstico Viernes puestos aparecen el jueves Descubre en: tinyurl / 26cm6ma Como: Navegación de artículos relacionados Deja un comentario Cancelar respuesta He tenido 2 preguntas: 1) ¿Puede utilizar el enfoque centrado MA para pronosticar o sólo para eliminar la estacionalidad 2) Cuando se utiliza el simple t (t-1t-2t-k) / k MA para prever un período por delante, es posible pronosticar más de un período por delante Supongo que entonces su pronóstico sería uno de los puntos de alimentación en el siguiente. Gracias. Me encanta la información y sus explicaciones me alegra que le guste el blog I8217m seguro de que varios analistas han utilizado el enfoque centrado MA para la predicción, pero yo personalmente no lo haría, ya que el enfoque resulta en una pérdida de observaciones en ambos extremos. Esto en realidad entonces se relaciona con su segunda pregunta. Generalmente, el MA simple se utiliza para pronosticar sólo un período por delante, pero muchos analistas 8211 y yo también a veces 8211 usaré mi pronóstico de un período de anticipación como uno de los insumos para el segundo período por delante. Es importante recordar que cuanto más hacia el futuro intente pronosticar, mayor será el riesgo de error de pronóstico. Esta es la razón por la cual no recomiendo el MA centrado para la predicción. 8211 la pérdida de observaciones al final significa tener que basarse en las previsiones de las observaciones perdidas, así como los periodos por venir, por lo que hay mayor probabilidad de error de pronóstico. Lectores: Se invita a ustedes a sopesar en esto. ¿Tiene alguna idea o sugerencias sobre este Brian, gracias por su comentario y sus elogios en el blog de la iniciativa de Niza y una buena explicación. It8217s realmente útil. Preveo circuitos impresos personalizados para un cliente que no da ninguna previsión. He utilizado la media móvil, sin embargo, no es muy preciso como la industria puede ir hacia arriba y hacia abajo. Vemos hacia medio del verano hasta el final del año que pcb8217s de envío está para arriba. Entonces vemos que a principios de año se ralentiza. ¿Cómo puedo ser más preciso con mis datos de Katrina, por lo que me dijiste, parece que sus ventas de circuitos impresos tienen un componente estacional. Hago la estacionalidad de la dirección en algunos de los otros postes del viernes del pronóstico. Otro enfoque que puede utilizar, que es bastante fácil, es el algoritmo de Holt-Winters, que tiene en cuenta la estacionalidad. Usted puede encontrar una buena explicación de ello aquí. Asegúrese de determinar si sus patrones estacionales son multiplicativos o aditivos, porque el algoritmo es ligeramente diferente para cada uno. Si traza los datos mensuales de algunos años y ve que las variaciones estacionales en los mismos tiempos de los años parecen ser constantes año tras año, entonces la estacionalidad es aditiva si las variaciones estacionales con el tiempo parecen estar aumentando, entonces la estacionalidad es Multiplicativo. La mayoría de las series temporales estacionales serán multiplicativas. En caso de duda, asumir multiplicativo. Buena suerte Hola, Entre los métodos:. Pronóstico de Nave. Actualización de la media. Promedio móvil de longitud k. Promedio móvil ponderado de longitud k OR Suavizado exponencial ¿Cuál de esos modelos de actualización me recomienda utilizar para pronosticar los datos? Para mi opinión, estoy pensando en la media móvil. Pero no sé cómo hacerlo claro y estructurado. Realmente depende de la cantidad y calidad de los datos que tenga y de su horizonte de previsión (largo, medio o corto plazo)
Punto y figura tamaño de caja forex
Binary_options_daily_charts_trading