Predicción de línea de tendencia promedio móvil de Excel

Predicción de línea de tendencia promedio móvil de Excel

Opciones binarias estrategia exitosa
previsión de divisas   2016
Binary_options_atm_scam_picture


Free_binary_options_indicators_for_mt45 Forex comercio progreso xls Parte integral de la forex kadro Section_83_stock_options Aeropuerto de landvetter de Forex г¶öppettider Best_binary_options_brokers_2012

En esta lección puedes aprender a usar líneas de tendencia en Excel. Las líneas de tendencia son útiles cuando se presentan datos que cambian con el tiempo. La línea de tendencia en el gráfico también se utiliza para predecir la distribución de los datos en el futuro o en el pasado. La predicción se utiliza en estadísticas y econometría, donde se denomina regresión. Las líneas de tendencia en Excel sólo se pueden agregar en gráficos no acumulativos y bidimensionales. Tipos de gráficos, que se pueden utilizar para: área, columna, línea, stock, barra, dispersión y burbuja. Las líneas de tendencia no se pueden agregar al gráfico: tridimensional, apilado y radar, pastel, superficie y anillo. He creado un gráfico de líneas simple como ejemplo. Para agregar una línea de tendencia, primero debe hacer clic en el gráfico. En la cinta de opciones, hay un nuevo menú Herramientas de gráfico. En la ficha Diseño, verá el botón Línea de tendencia. Puede insertar 4 tipos diferentes de líneas de tendencia. Estos son: Línea de tendencia lineal, Línea de tendencia exponencial, Tendencia lineal de tendencia y Media móvil de dos periodos. Tendencia lineal para este gráfico de línea muestra será como en la imagen de abajo. De esta forma, puede insertar líneas de tendencia muy simples. Obtendrá más oportunidades después de seleccionar el botón Más opciones de tendencia. A continuación, aparece el cuadro de diálogo Formato de línea de tendencia. Este cuadro de diálogo le ofrece muchas opciones para trabajar con las líneas de tendencia. Por ejemplo, veamos cómo se verá en los próximos 10 periodos de pronóstico para su línea de tendencia de ejemplo. Es sólo un ejemplo muy simple. Como se puede ver, las líneas de tendencia son bastante útiles tool.Add una tendencia o línea de media móvil a un gráfico Se aplica a: Excel 2016 Word 2016 PowerPoint 2016 Excel 2013 Word 2013 Outlook 2013 PowerPoint 2013 Más. Menos Para mostrar las tendencias de datos o las medias móviles en un gráfico que creó. Puede agregar una línea de tendencia. También puede ampliar una línea de tendencia más allá de sus datos reales para ayudar a predecir los valores futuros. Por ejemplo, la siguiente línea de tendencia lineal pronostica dos trimestres por delante y muestra claramente una tendencia al alza que parece prometedora para las ventas futuras. Puede agregar una línea de tendencia a una gráfica bidimensional que no esté apilada, incluyendo área, barra, columna, línea, stock, dispersión y burbuja. No puede agregar una línea de tendencia a un mapa de 3-D, radar, pastel, superficie o donut apilados. Agregar una línea de tendencia En su gráfico, haga clic en la serie de datos a la que desea agregar una línea de tendencia o una media móvil. La línea de tendencia comenzará en el primer punto de datos de la serie de datos que elija. Marque la casilla Trendline. Para elegir un tipo diferente de línea de tendencia, haga clic en la flecha junto a Trendline. A continuación, haga clic en Exponencial. Pronóstico lineal. O Media móvil de dos periodos. Para obtener más líneas de tendencia, haga clic en Más opciones. Si selecciona Más opciones. Haga clic en la opción que desee en el panel Formato de línea de tendencia bajo Opciones de línea de tendencia. Si selecciona Polynomial. Introduzca la potencia más alta para la variable independiente en el cuadro Orden. Si selecciona Media móvil. Introduzca el número de períodos que se utilizarán para calcular la media móvil en el cuadro Período. Sugerencia: Una línea de tendencia es más precisa cuando su valor R-cuadrado (un número de 0 a 1 que revela cuán estrechamente los valores estimados para la línea de tendencia corresponden a los datos reales) es igual o cercano a 1. Cuando agrega una línea de tendencia a sus datos , Excel calcula automáticamente su valor R-cuadrado. Puede mostrar este valor en su gráfico, marcando el valor Mostrar cuadrado R en el cuadro de gráfico (panel Formato de línea de tendencia, Opciones de línea de tendencia). Puede obtener más información sobre todas las opciones de la línea de tendencia en las secciones siguientes. Línea de tendencia lineal Utilice este tipo de línea de tendencia para crear una línea recta de mejor ajuste para conjuntos de datos lineales simples. Sus datos son lineales si el patrón en sus puntos de datos se parece a una línea. Una línea de tendencia lineal por lo general muestra que algo está aumentando o disminuyendo a un ritmo constante. Una línea de tendencia lineal utiliza esta ecuación para calcular los mínimos cuadrados aptos para una línea: donde m es la pendiente yb es la intersección. La siguiente línea de tendencia lineal muestra que las ventas de refrigeradores han aumentado constantemente durante un período de 8 años. Observe que el valor de R-cuadrado (un número de 0 a 1 que revela cuán estrechamente los valores estimados para la línea de tendencia corresponden a sus datos reales) es 0.9792, que es un buen ajuste de la línea a los datos. Al mostrar una línea curva mejor ajustada, esta línea de tendencia es útil cuando la tasa de cambio en los datos aumenta o disminuye rápidamente y luego se nivela. Una línea de tendencia logarítmica puede usar valores negativos y positivos. Una línea de tendencia logarítmica utiliza esta ecuación para calcular los mínimos cuadrados que se ajustan a los puntos: donde c y b son constantes y ln es la función de logaritmo natural. La siguiente línea de tendencia logarítmica muestra el crecimiento poblacional previsto de los animales en un área de espacio fijo, donde la población nivelada como espacio para los animales disminuyó. Tenga en cuenta que el valor R-cuadrado es 0.933, que es un ajuste relativamente bueno de la línea a los datos. Esta línea de tendencia es útil cuando sus datos fluctúan. Por ejemplo, cuando analiza ganancias y pérdidas en un conjunto de datos grande. El orden del polinomio puede determinarse por el número de fluctuaciones en los datos o por el número de curvas (colinas y valles) que aparecen en la curva. Normalmente, una línea de tendencia polinomial de Orden 2 tiene sólo una colina o valle, una Orden 3 tiene una o dos colinas o valles, y una Orden 4 tiene hasta tres colinas o valles. Una línea de tendencia polinomial o curvilínea utiliza esta ecuación para calcular los mínimos cuadrados que se ajustan a los puntos: donde b son constantes. La siguiente línea de tendencia polinomial de la orden 2 (una colina) muestra la relación entre la velocidad de conducción y el consumo de combustible. Observe que el valor R-cuadrado es 0.979, que es cercano a 1 por lo que las líneas un buen ajuste a los datos. Al mostrar una línea curva, esta línea de tendencia es útil para conjuntos de datos que comparan medidas que aumentan a una velocidad específica. Por ejemplo, la aceleración de un coche de carreras a intervalos de 1 segundo. No puede crear una línea de tendencia de energía si sus datos contienen valores cero o negativos. Una línea de tendencia de potencia usa esta ecuación para calcular los mínimos cuadrados que se ajustan a los puntos: donde cyb son constantes. Nota: Esta opción no está disponible cuando los datos incluyen valores negativos o cero. El siguiente gráfico de medidas de distancia muestra la distancia en metros por segundos. La línea de tendencia de potencia demuestra claramente la creciente aceleración. Tenga en cuenta que el valor R-cuadrado es 0.986, que es un ajuste casi perfecto de la línea a los datos. Al mostrar una línea curva, esta línea de tendencia es útil cuando los valores de los datos suben o bajan a tasas constantemente en aumento. No puede crear una línea de tendencia exponencial si sus datos contienen valores cero o negativos. Una línea de tendencia exponencial utiliza esta ecuación para calcular los mínimos cuadrados que se ajustan a los puntos: donde c yb son constantes y e es la base del logaritmo natural. La siguiente línea de tendencia exponencial muestra la cantidad decreciente de carbono 14 en un objeto a medida que envejece. Tenga en cuenta que el valor R-cuadrado es 0,990, lo que significa que la línea se ajusta a los datos casi perfectamente. Línea de tendencia de media móvil Esta línea de tendencia iguala las fluctuaciones de los datos para mostrar un patrón o una tendencia más claramente. Una media móvil utiliza un número específico de puntos de datos (establecidos por la opción Período), los promedia y utiliza el valor promedio como un punto en la línea. Por ejemplo, si Período se establece en 2, el promedio de los dos primeros puntos de datos se utiliza como el primer punto de la línea de tendencia del promedio móvil. El promedio de los puntos de datos segundo y tercero se utiliza como segundo punto en la línea de tendencia, etc. Una línea de tendencia de media móvil utiliza esta ecuación: El número de puntos en una línea de tendencia de media móvil es igual al número total de puntos de la serie menos el Número que especifique para el período. En un gráfico de dispersión, la línea de tendencia se basa en el orden de los valores de x en el gráfico. Para obtener un resultado mejor, ordene los valores x antes de agregar un promedio móvil. La siguiente línea de tendencia de media móvil muestra un patrón en el número de viviendas vendidas en un período de 26 semanas. Ver también Las tendencias del término implican un cambio en el tiempo. Un tipo de pronóstico es cuantitativo, e implica analizar datos de series de tiempo, y luego predecir lo que podría ser el futuro. Por ejemplo, las ventas en un puesto de helado en el parque de la ciudad en junio de cada uno de los últimos cinco años ha sido buena, pero en julio fue alrededor de 20 más que en junio. Si este año, el stand tomó 10.000 en junio (un nuevo récord), ¿cuánto predeciría que tomará en julio? Bueno, si estuviéramos correctos en nuestra hipótesis basada en los datos históricos, la estimación de marzo sería la cifra de julio 20 más alto, o 12.000. Microsoft Excel ofrece algunas herramientas integradas para la previsión. Una de ellas le permite agregar una línea de tendencia a los puntos de datos existentes en un gráfico. Esto permite al usuario interpolar (es decir, encontrar un punto de datos entre puntos existentes) o extrapolar (es decir, para encontrar un punto de datos pasado el final de los datos actuales, ya sea por pronóstico o quotbackcasting a un período anterior). Sin embargo, Como con las plantillas, los desarrolladores de estas herramientas han tomado algunas decisiones para el usuario, y no todos los usuarios estarían de acuerdo con esas decisiones. Si las limitaciones impuestas por las características de Microsoft Excels para la predicción son inapropiadas para una tarea de pronóstico en particular, al lector se le alienta a utilizar la manipulación numérica directa utilizando técnicas analíticas probadas como se describe en cualquiera de varios textos sobre pronóstico (como Makridakis, Wheelwright amp Hyndman, 1998). Antes de comenzar En esta página se supone que el usuario tiene Microsoft Excel8482 2010 o 2007 con el complemento Analysis ToolPak de Microsoft instalado. Veamos algunos datos referentes a lámparas fluorescentes compactas (CFLs) usando lo siguiente como un documento fuente: US Department of Energy. (2009). CFL Market Profile - Marzo de 2009. Washington, DC: Autor. Obtenido el 7 de abril de 2009 de energystar.gov/ia/products/downloads/CFLMarketProfile.pdf El análisis en este informe fue realizado por D amp R International, LTD (drintl /.) En la página 2, hay un gráfico de barras (o barra ) Que enumera el número de envíos de LFC por año hasta 2007, y luego predice el número de envíos en 2008, 2009 y 2010, sobre la base de esos datos. Permite utilizar los datos de este gráfico y la potencia de Microsoft Excel para hacer una predicción similar. Idealmente, tendría los valores de datos reales, pero en este caso, se hizo una estimación basada en el gráfico anterior y la siguiente se ingresó en una hoja de cálculo de Excel. Tabla 1. Datos brutos. Permite ver sólo los datos históricos de 2000 a 2007, no las estimaciones o predicciones para 2008 a 2010. Podemos recrear el gráfico de barras mostrado en el documento de origen seleccionando los datos históricos en Excel y creando un gráfico de barras: Figura 2. Datos crudos en un gráfico de barras para coincidir con original Pero en lugar de eso, permite crear un diagrama de dispersión de los valores (ya que la característica de ecuación de la línea de tendencia Excels puede producir errores con gráficos de barras o gráficos de líneas.) Figura 3. Datos brutos en un gráfico de dispersión. Adición de una línea de tendencia lineal y una ecuación de regresión Ahora, recuerde, sólo nos interesan los datos de CFL y queremos poder predecir los años futuros. Para agregar una línea de tendencia, haga clic en uno de los iconos que representan un punto de datos para CFL y, a continuación, haga clic con el botón derecho del ratón y seleccione quotAdd Trendline.quot Verá el siguiente cuadro de diálogo. En este ejemplo, asumiremos que el número de lámparas fluorescentes compactas enviadas por año aumenta a una velocidad constante o lineal. Por ahora, en el área Opciones de Tendencia, seleccione el siguiente tipo de Tendencia / Regresión: Pronóstico Lineal - Adelante 3 períodos Visualización Ecuación en el gráfico Después de mover la ecuación tenemos: Figura 5. Datos brutos con una línea de tendencia lineal y una ecuación de regresión. La ecuación es una ecuación de regresión lineal. Eso significa que es la ecuación de una línea recta que mejor se ajusta a los puntos en el gráfico. El método que utiliza Excel para determinar estas ecuaciones implica encontrar la línea que produce el menor valor para la suma de los cuadrados de las diferencias verticales entre los puntos de datos y la línea. Como todas las líneas, tiene una ecuación en la forma: y es el número a calcular, la variable dependiente o, en este caso, el número de millones de CFL enviadas por año m es la pendiente de la línea, que es igual al cambio En el valor de y dividido por el cambio en el valor de x x es el punto de datos dado o la variable dependiente, en este caso, es el año yb es la intersección de eje-y de la línea. Y 388 millones de LFCs enviados Podemos sustituir otros valores de x, como el año 2020, y como tenemos una ecuación, podemos predecir que habrá 793 millones de LFCs enviadas en el año 2020. Por supuesto, esto está haciendo una Muchos supuestos que no debemos hacer. En particular, asumimos que la tendencia es lineal y que continuará en el futuro. Método alternativo. Puede encontrar la ecuación directamente de los datos presentados, si lo desea. Seleccione dos celdas como G5 y G6 y luego comience a escribir en la fórmula: LINEST (rango) para el rango, seleccione todos los valores y conocidos, a continuación, escriba el paréntesis de cierre, pero no pulse la tecla Intro. En su lugar, pulse Control-Mayús-Intro. Youll ver la pendiente y la intercepción aparecen en estas dos celdas. Muchas tendencias no son lineales. Por ejemplo, la población humana en el planeta era bastante lineal, pero luego se disparó, como se ilustra en la línea roja de la siguiente figura: Figura 7. Tendencia no lineal de crecimiento de la población mundial a largo plazo. Naciones Unidas, 1999, p. 7. Existen varias ecuaciones predictivas no lineales. Bien mirar dos, ecuaciones exponenciales y ecuaciones polinómicas, pero se aconseja explorar otros. Tomemos los mismos datos históricos de envío de CFL que utilizamos anteriormente y aplicamos algunas líneas de tendencia no lineales. Aquí hay una línea de tendencia exponencial. Utiliza una ecuación que tiene el valor x (el año) como exponente. Hice clic en la nueva ecuación una etiqueta de línea de tendencia de quotformat seleccionada para mostrar la ecuación en notación científica con seis puntos decimales, ya que el valor predeterminado no me da suficiente precisión para predecir. Figura 8. Datos brutos con línea de tendencia exponencial. Como podemos ver, la línea de tendencia es curvada, no tanto como lo indica el relativamente alto punto de referencia de 2007, pero todavía está curvado. La ecuación predictiva es: y 1.598767 E -279 e 3.226616 E -01 x Recuerde que el capital E significa quotTimes diez a la potencia de y que el caso minúsculo e es una constante aproximadamente igual a 2.71828. En Excel, puedo escribir en la siguiente fórmula en cualquier celda: y reemplazando quot2010quot con el año, obtener una predicción para ese año. El valor para 2010 es 733 millones de LFC, y el valor para 2012 es de 1.398 millones de liras CFL. La ecuación predictiva puede ser un polinomio. Vimos que la ecuación de regresión lineal era una ecuación polinomial de segundo orden, o cuadrática, agrega un término x 2, resultando en: La gráfica de una ecuación cuadrática de esta forma es típicamente una parábola. Aquí está el mismo dato con una línea de tendencia polinomial de segundo orden: Figura 9. Línea de tendencia polinómica de segundo orden con ecuación. Es posible aumentar el orden, añadiendo un término x 3. x 4. o x 5, si hay razón para creer que tal curva será más precisa. A veces, sospechamos que los datos deben ser modificados. En nuestro ejemplo, observe cuán alto era el valor de 400 para 2007. Un analista podría tener razones para creer que este punto era un valor atípico, y debido a algunas circunstancias especiales, como una campaña de marketing de una sola vez, el alto valor de este dato Está desechando la predicción futura. Permite alterar los datos, reduciendo ese punto a 300. Tabla 2. Datos revisados. Utilizando los datos revisados ​​y la predicción de polinomios de segundo orden, obtenemos: Figura 10. El valor de 2007 fue cambiado de 400 a 300 en la creencia de que se trataba de un valor anormal. Observe cómo la Figura 10 está relativamente cerca de la predicción inicial mostrada en el documento original de la DOE de EE.UU. Hay muchas maneras de transformar y ajustar los datos, y en cada caso el analista debe tener una línea defendible de razonamiento que justifique la transformación. Al igual que con muchas formas de análisis estadístico, la extrapolación de la línea de tendencia puede estar sujeta a intentos deliberados de hacer que los datos sugieran el sesgo de los analistas. Esto es inapropiado. Donde hay proyecciones alternativas, es mejor presentarlas con explicaciones de cada una. Por ejemplo, la siguiente ilustración muestra varios caminos diferentes que la población mundial podría tomar en diferentes condiciones explicadas por los autores. Como se ve en Excels Trendline Options cuadro de diálogo, hay otros tipos de líneas de tendencia que se pueden agregar, incluyendo un logarítmico, la energía y media móvil línea de tendencia. El complemento de Analysis ToolPak para Excel también tiene varias herramientas de previsión. Para acceder a ellos, haga clic en Análisis de datos en la ficha Datos. Verá el promedio móvil, la regresión y el suavizado exponencial allí, todos los cuales pueden usarse para pronosticar. Pero no te detengas ahí, Excel, al igual que algunos otros programas de manipulación numérica, permite al usuario controlar directamente las fórmulas utilizadas para obtener valores. No tenemos que conformarnos con la configuración predeterminada que se utiliza en la función Agregar Trendline de gráficos, pero podemos realizar los cálculos necesarios en los datos directamente. Para obtener información sobre los métodos de esta lección, y otros, como el método de Box-Jenkins, regresión dinámica, regresión múltiple, consulte un texto sobre pronóstico, como el de Makridakis, Wheelwright, amp Hyndman (1998). Makridakis. S. Wheelwright, S. amp Hyndman, R. (1998). Previsión: Métodos y Aplicaciones. 3ª ed. New York: Wiley amp Sons. Naciones Unidas. (1998). Proyecciones mundiales de población a largo plazo: Basado en la Revisión de 1998. Resumen ejecutivo . Autor. Obtenido el 7 de abril de 2009 de un.org/esa/population/publications/longrange/longrangeExecSum.pdf Departamento de Energía de los Estados Unidos. (2009). CFL Market Profile - Marzo de 2009. Washington, DC: Autor. Obtenido el 7 de abril de 2009 de energystar.gov/ia/products/downloads/CFLMarketProfile.pdf
Nyse gráfico de media móvil de 30 semanas
Filtro de media móvil javascript