Moving_average_forecasting_minitab

Moving_average_forecasting_minitab

Rollover   opción binaria
Plantilla de sistema de comercio de Excel
Venta forex en pune


Sistema de comercio de tenis Betfair Binary_option_excel Forex tamaño del lote 0 1 Dukascopy forex evento geneva Revisión de sitios web de Forex Top 10 corredores de opciones binarias

Pronóstico con análisis de series temporales ¿Qué es pronóstico? La predicción es un método que se utiliza ampliamente en el análisis de series de tiempo para predecir una variable de respuesta, como las ganancias mensuales, el desempeño del stock o las cifras de desempleo, durante un período de tiempo específico. Los pronósticos se basan en los patrones de los datos existentes. Por ejemplo, un gestor de almacén puede modelar la cantidad de producto a pedido durante los próximos 3 meses en función de los 12 meses anteriores de pedidos. Puede utilizar una variedad de métodos de series de tiempo, como análisis de tendencias, descomposición o suavizado exponencial simple, para modelar patrones en los datos y extrapolar esos patrones al futuro. Elija un método de análisis para determinar si los patrones son estáticos (constantes a lo largo del tiempo) o dinámicos (cambio con el tiempo), la naturaleza de la tendencia y los componentes estacionales, y cuánto antes se desea pronosticar. Antes de producir los pronósticos, se ajustan varios modelos de candidatos a los datos para determinar qué modelo es el más estable y preciso. Previsiones para un análisis de media móvil El valor ajustado en el tiempo t es la media móvil no centrada en el tiempo t -1. Los pronósticos son los valores ajustados al origen previsto. Si prevé 10 unidades de tiempo por delante, el valor previsto para cada momento será el valor ajustado en el origen. Los datos hasta el origen se utilizan para calcular las medias móviles. Puede utilizar el método de medias móviles lineales calculando promedios móviles consecutivos. El método de promedios móviles lineales se utiliza a menudo cuando existe una tendencia en los datos. Primero, calcule y almacene el promedio móvil de la serie original. A continuación, calcule y almacene el promedio móvil de la columna previamente almacenada para obtener una segunda media móvil. En predicciones ingenuas, la previsión para el tiempo t es el valor de los datos en el tiempo t -1. El uso del procedimiento de media móvil con un promedio móvil de longitud uno da un pronóstico ingenuo. Previsiones para un único análisis de suavizado exponencial El valor ajustado en el tiempo t es el valor suavizado en el tiempo t-1. Los pronósticos son el valor ajustado al origen previsto. Si prevé 10 unidades de tiempo por delante, el valor previsto para cada momento será el valor ajustado en el origen. Los datos hasta el origen se utilizan para el suavizado. En pronósticos ingenuos, la previsión para el tiempo t es el valor de los datos en el tiempo t-1. Realizar un solo suavizado exponencial con un peso de uno para hacer predicciones ingenuas. Previsiones para un doble análisis de suavizado exponencial El doble suavizado exponencial utiliza los componentes de nivel y tendencia para generar pronósticos. El pronóstico para m períodos por delante de un punto en el tiempo t es L t mT t. Donde L t es el nivel y T t es la tendencia en el tiempo t. Se utilizarán datos hasta el tiempo de origen previsto para el suavizado. Pronósticos del método Winters El método Winters utiliza el nivel, la tendencia y los componentes estacionales para generar pronósticos. La previsión para m períodos por delante de un punto en el tiempo t es: donde L t es el nivel y T t es la tendencia en el tiempo t, multiplicada por (o agregada para un modelo aditivo) la componente estacional para el mismo período desde el momento Año anterior. Winters utiliza datos hasta el tiempo de origen previsto para generar los pronósticos. ¿Qué es un promedio móvil? El primer promedio móvil es 4310, que es el valor de la primera observación. El siguiente promedio móvil es el promedio de las dos primeras observaciones, (4310 4400) / 2 4355. La tercera media móvil es el promedio de las dos primeras observaciones, El promedio de la observación 2 y 3, (4400 4000) / 2 4200, y así sucesivamente. Si desea utilizar un promedio móvil de longitud 3, se promedian tres valores en lugar de dos. Copyright 2016 Minitab Inc. Todos los derechos reservados. Al utilizar este sitio, usted acepta el uso de cookies para análisis y contenido personalizado. Lea nuestra políticaMoving Average - MA BREAKING DOWN Promedio móvil - MA Como ejemplo de SMA, considere un valor con los siguientes precios de cierre en 15 días: Semana 1 (5 días) 20, 22, 24, 25, 23 Semana 2 (5 días) 26, 28, 26, 29, 27 Semana 3 (5 días) 28, 30, 27, 29, 28 Un MA de 10 días promediaría los precios de cierre de los primeros 10 días como el primer punto de datos. El próximo punto de datos bajaría el precio más temprano, agregaría el precio el día 11 y tomaría el promedio, y así sucesivamente como se muestra a continuación. Como se mencionó anteriormente, las AMs se retrasan en la acción de los precios actuales porque se basan en precios pasados, mientras más largo sea el período de tiempo para la MA, mayor será el retraso. Por lo tanto, un MA de 200 días tendrá un grado mucho mayor de retraso que un MA de 20 días porque contiene precios durante los últimos 200 días. La longitud de la MA a utilizar depende de los objetivos comerciales, con MA más cortos utilizados para el comercio a corto plazo y de más largo plazo MA más adecuado para los inversores a largo plazo. El MA de 200 días es ampliamente seguido por inversores y comerciantes, con rupturas por encima y por debajo de este promedio móvil considerado como señales comerciales importantes. Las MA también imparten señales comerciales importantes por sí solas, o cuando dos medias se cruzan. Un aumento MA indica que la seguridad está en una tendencia alcista. Mientras que un MA decreciente indica que está en una tendencia bajista. Del mismo modo, el impulso ascendente se confirma con un cruce alcista. Que se produce cuando una MA a corto plazo cruza por encima de un MA a más largo plazo. El impulso descendente se confirma con un cruce bajista, que ocurre cuando un MA a corto plazo cruza por debajo de un MA a largo plazo. Promedio móvil y modelos de suavizado exponencial Como primer paso para ir más allá de los modelos de media, aleatoria y lineal, Los patrones no estacionales y las tendencias pueden ser extrapolados usando un modelo de media móvil o suavizado. La suposición básica detrás de los modelos de promedio y suavizado es que la serie temporal es localmente estacionaria con una media que varía lentamente. Por lo tanto, tomamos un promedio móvil (local) para estimar el valor actual de la media y luego usarlo como pronóstico para el futuro cercano. Esto puede considerarse como un compromiso entre el modelo medio y el modelo aleatorio-paseo-sin-deriva. La misma estrategia se puede utilizar para estimar y extrapolar una tendencia local. Una media móvil se denomina a menudo una versión quotomoldeada de la serie original porque el promedio de corto plazo tiene el efecto de suavizar los golpes en la serie original. Al ajustar el grado de suavizado (el ancho de la media móvil), podemos esperar encontrar algún tipo de equilibrio óptimo entre el rendimiento de la media y los modelos de caminata aleatoria. El tipo más simple de modelo de promediación es el. Promedio móvil simple (igualmente ponderado): El pronóstico para el valor de Y en el tiempo t1 que se hace en el tiempo t es igual al promedio simple de las observaciones m más recientes: (Aquí y en otros lugares usaré el símbolo 8220Y-hat8221 para permanecer en pie Para un pronóstico de la serie de tiempo Y hecho a la fecha más temprana posible posible por un modelo dado). Este promedio se centra en el período t (m1) / 2, lo que implica que la estimación de la media local tiende a quedar rezagada detrás del Valor real de la media local de aproximadamente (m1) / 2 periodos. Por lo tanto, decimos que la edad media de los datos en el promedio móvil simple es (m1) / 2 en relación con el período para el cual se calcula el pronóstico: es la cantidad de tiempo por el cual los pronósticos tenderán a rezagarse detrás de los puntos de inflexión en el datos. Por ejemplo, si está promediando los últimos 5 valores, las previsiones serán de aproximadamente 3 períodos tarde en la respuesta a los puntos de inflexión. Tenga en cuenta que si m1, el modelo de media móvil simple (SMA) es equivalente al modelo de caminata aleatoria (sin crecimiento). Si m es muy grande (comparable a la longitud del período de estimación), el modelo SMA es equivalente al modelo medio. Como con cualquier parámetro de un modelo de pronóstico, es habitual ajustar el valor de k para obtener el mejor valor de los datos, es decir, los errores de predicción más pequeños en promedio. He aquí un ejemplo de una serie que parece presentar fluctuaciones aleatorias alrededor de una media de variación lenta. En primer lugar, vamos a tratar de encajar con un modelo de caminata al azar, que es equivalente a una media móvil simple de un término: El modelo de caminata aleatoria responde muy rápidamente a los cambios en la serie, pero al hacerlo, recoge gran parte del quotnoisequot en el Los datos (las fluctuaciones aleatorias), así como el quotsignalquot (la media local). Si en lugar de eso intentamos una media móvil simple de 5 términos, obtendremos un conjunto de previsiones más suaves: El promedio móvil simple a 5 terminos produce errores significativamente menores que el modelo de caminata aleatoria en este caso. La edad promedio de los datos de esta previsión es de 3 ((51) / 2), de modo que tiende a quedar a la zaga de los puntos de inflexión en aproximadamente tres períodos. (Por ejemplo, parece haber ocurrido una recesión en el período 21, pero las previsiones no giran hasta varios periodos más tarde). Obsérvese que los pronósticos a largo plazo del modelo SMA son una línea recta horizontal, al igual que en la caminata aleatoria modelo. Por lo tanto, el modelo SMA asume que no hay tendencia en los datos. Sin embargo, mientras que las previsiones del modelo de caminata aleatoria son simplemente iguales al último valor observado, las previsiones del modelo SMA son iguales a un promedio ponderado de valores recientes. Los límites de confianza calculados por Statgraphics para los pronósticos a largo plazo de la media móvil simple no se amplían a medida que aumenta el horizonte de pronóstico. Esto obviamente no es correcto Desafortunadamente, no hay una teoría estadística subyacente que nos diga cómo los intervalos de confianza deberían ampliarse para este modelo. Sin embargo, no es demasiado difícil calcular estimaciones empíricas de los límites de confianza para las previsiones a más largo plazo. Por ejemplo, podría configurar una hoja de cálculo en la que el modelo SMA se utilizaría para pronosticar dos pasos adelante, tres pasos adelante, etc. dentro de la muestra de datos históricos. A continuación, podría calcular las desviaciones estándar de los errores en cada horizonte de pronóstico y, a continuación, construir intervalos de confianza para pronósticos a más largo plazo sumando y restando múltiplos de la desviación estándar apropiada. Si intentamos una media móvil sencilla de 9 términos, obtendremos pronósticos aún más suaves y más de un efecto rezagado: La edad promedio es ahora de 5 períodos ((91) / 2). Si tomamos una media móvil de 19 términos, la edad promedio aumenta a 10: Obsérvese que, de hecho, las previsiones están ahora rezagadas detrás de los puntos de inflexión en aproximadamente 10 períodos. Qué cantidad de suavizado es la mejor para esta serie Aquí hay una tabla que compara sus estadísticas de error, incluyendo también un promedio de 3 términos: El modelo C, la media móvil de 5 términos, produce el valor más bajo de RMSE por un pequeño margen sobre los 3 A término y 9 promedios, y sus otras estadísticas son casi idénticas. Por lo tanto, entre los modelos con estadísticas de error muy similares, podemos elegir si preferiríamos un poco más de capacidad de respuesta o un poco más de suavidad en las previsiones. El modelo de media móvil simple descrito anteriormente tiene la propiedad indeseable de que trata las últimas k observaciones por igual e ignora por completo todas las observaciones precedentes. (Volver al principio de la página.) Browns Simple Exponential Smoothing Intuitivamente, los datos pasados ​​deben ser descontados de una manera más gradual - por ejemplo, la observación más reciente debería tener un poco más de peso que la segunda más reciente, y la segunda más reciente debería tener un poco más de peso que la tercera más reciente, y pronto. El modelo de suavizado exponencial simple (SES) lo logra. Sea 945 una constante quotsmoothingquot (un número entre 0 y 1). Una forma de escribir el modelo es definir una serie L que represente el nivel actual (es decir, el valor medio local) de la serie, tal como se estimó a partir de los datos hasta el presente. El valor de L en el tiempo t se calcula recursivamente a partir de su propio valor anterior como este: Así, el valor suavizado actual es una interpolación entre el valor suavizado anterior y la observación actual, donde 945 controla la proximidad del valor interpolado al valor más reciente observación. El pronóstico para el siguiente período es simplemente el valor suavizado actual: Equivalentemente, podemos expresar el próximo pronóstico directamente en términos de previsiones anteriores y observaciones previas, en cualquiera de las siguientes versiones equivalentes. En la primera versión, la previsión es una interpolación entre la previsión anterior y la observación anterior: En la segunda versión, la siguiente previsión se obtiene ajustando la previsión anterior en la dirección del error anterior por una cantidad fraccionada de 945. es el error hecho en Tiempo t En la tercera versión, el pronóstico es una media móvil exponencialmente ponderada (es decir, descontada) con el factor de descuento 1-945: La versión de interpolación de la fórmula de pronóstico es la más simple de usar si está implementando el modelo en una hoja de cálculo: se ajusta en un Célula única y contiene referencias de celdas que apuntan a la previsión anterior, la observación anterior y la celda donde se almacena el valor de 945. Tenga en cuenta que si 945 1, el modelo SES es equivalente a un modelo de caminata aleatoria (sin crecimiento). Si 945 0, el modelo SES es equivalente al modelo medio, asumiendo que el primer valor suavizado se establece igual a la media. La edad promedio de los datos en el pronóstico de suavización exponencial simple es de 1/945 en relación con el período para el cual se calcula la predicción. (Esto no se supone que sea obvio, pero se puede demostrar fácilmente mediante la evaluación de una serie infinita.) Por lo tanto, el pronóstico promedio móvil simple tiende a quedar rezagado detrás de puntos de inflexión en aproximadamente 1/945 períodos. Por ejemplo, cuando 945 0.5 el retraso es 2 períodos cuando 945 0.2 el retraso es 5 períodos cuando 945 0.1 el retraso es 10 períodos, y así sucesivamente. Para una edad promedio dada (es decir, la cantidad de retraso), el simple suavizado exponencial (SES) pronosticado es algo superior a la predicción del promedio móvil simple (SMA), ya que coloca relativamente más peso en la observación más reciente - ie. Es un poco más sensible a los cambios ocurridos en el pasado reciente. Por ejemplo, un modelo SMA con 9 términos y un modelo SES con 945 0.2 tienen una edad promedio de 5 para los datos de sus pronósticos, pero el modelo SES pone más peso en los 3 últimos valores que el modelo SMA y en el modelo SMA. Otra ventaja importante del modelo SES sobre el modelo SMA es que el modelo SES utiliza un parámetro de suavizado que es continuamente variable, por lo que se puede optimizar fácilmente Utilizando un algoritmo quotsolverquot para minimizar el error cuadrático medio. El valor óptimo de 945 en el modelo SES de esta serie resulta ser 0.2961, como se muestra aquí: La edad promedio de los datos de esta previsión es de 1 / 0,2961 3,4 períodos, que es similar a la de un movimiento simple de 6 términos promedio. Los pronósticos a largo plazo del modelo SES son una línea recta horizontal. Como en el modelo SMA y el modelo de caminata aleatoria sin crecimiento. Sin embargo, tenga en cuenta que los intervalos de confianza calculados por Statgraphics ahora divergen de manera razonable y que son sustancialmente más estrechos que los intervalos de confianza para el modelo de caminata aleatoria. El modelo SES asume que la serie es algo más predecible que el modelo de caminata aleatoria. Un modelo SES es en realidad un caso especial de un modelo ARIMA. Por lo que la teoría estadística de los modelos ARIMA proporciona una base sólida para el cálculo de los intervalos de confianza para el modelo SES. En particular, un modelo SES es un modelo ARIMA con una diferencia no estacional, un término MA (1) y ningún término constante. Conocido también como modelo quotARIMA (0,1,1) sin constantequot. El coeficiente MA (1) en el modelo ARIMA corresponde a la cantidad 1-945 en el modelo SES. Por ejemplo, si se ajusta un modelo ARIMA (0,1,1) sin constante a la serie analizada aquí, el coeficiente MA estimado (1) resulta ser 0.7029, que es casi exactamente un menos 0.2961. Es posible añadir la suposición de una tendencia lineal constante no nula a un modelo SES. Para ello, basta con especificar un modelo ARIMA con una diferencia no estacional y un término MA (1) con una constante, es decir, un modelo ARIMA (0,1,1) con constante. Las previsiones a largo plazo tendrán entonces una tendencia que es igual a la tendencia media observada durante todo el período de estimación. No puede hacerlo junto con el ajuste estacional, ya que las opciones de ajuste estacional están deshabilitadas cuando el tipo de modelo está ajustado a ARIMA. Sin embargo, puede agregar una tendencia exponencial a largo plazo constante a un modelo de suavización exponencial simple (con o sin ajuste estacional) utilizando la opción de ajuste de inflación en el procedimiento de previsión. La tasa apropiada de inflación (crecimiento porcentual) por período puede estimarse como el coeficiente de pendiente en un modelo de tendencia lineal ajustado a los datos en conjunción con una transformación de logaritmo natural o puede basarse en otra información independiente sobre las perspectivas de crecimiento a largo plazo . (Regreso al inicio de la página.) Browns Linear (es decir, doble) Suavizado exponencial Los modelos SMA y SES suponen que no hay ninguna tendencia de ningún tipo en los datos (que normalmente está bien o al menos no es demasiado malo para 1- Avance anticipado cuando los datos son relativamente ruidosos), y se pueden modificar para incorporar una tendencia lineal constante como se muestra arriba. ¿Qué pasa con las tendencias a corto plazo? Si una serie muestra una tasa de crecimiento variable o un patrón cíclico que se destaca claramente contra el ruido, y si hay una necesidad de pronosticar más de un período, la estimación de una tendencia local también podría ser un problema. El modelo de suavizado exponencial simple puede generalizarse para obtener un modelo lineal de suavizado exponencial (LES) que calcula las estimaciones locales de nivel y tendencia. El modelo de tendencia más simple que varía en función del tiempo es el modelo lineal de suavizado exponencial de Browns, el cual utiliza dos series suavizadas diferentes que están centradas en diferentes momentos del tiempo. La fórmula de predicción se basa en una extrapolación de una línea a través de los dos centros. (Una versión más sofisticada de este modelo, Holt8217s, se discute a continuación). La forma algebraica del modelo de suavizado exponencial lineal de Brown8217s, como la del modelo de suavizado exponencial simple, puede expresarse en varias formas diferentes pero equivalentes. La forma estándar de este modelo se expresa usualmente de la siguiente manera: Sea S la serie de suavizado simple obtenida aplicando el suavizado exponencial simple a la serie Y. Es decir, el valor de S en el periodo t está dado por: (Recuérdese que, Exponencial, esto sería la previsión para Y en el período t1). Entonces, vamos a Squot denotar la serie doblemente suavizada obtenida aplicando el suavizado exponencial simple (usando el mismo 945) a la serie S: Finalmente, la previsión para Y tk. Para cualquier kgt1, viene dado por: Esto produce e 1 0 (es decir, trucar un poco y dejar que el primer pronóstico sea igual a la primera observación real), y e 2 Y 2 8211 Y 1. Después de lo cual las previsiones se generan usando la ecuación anterior. Esto produce los mismos valores ajustados que la fórmula basada en S y S si estos últimos se iniciaron usando S 1 S 1 Y 1. Esta versión del modelo se utiliza en la página siguiente que ilustra una combinación de suavizado exponencial con ajuste estacional. Holt8217s Linear Exponential Smoothing Brown8217s El modelo LES calcula las estimaciones locales de nivel y tendencia al suavizar los datos recientes, pero el hecho de que lo haga con un solo parámetro de suavizado impone una restricción en los patrones de datos que puede encajar: el nivel y la tendencia No se les permite variar a tasas independientes. El modelo LES de Holt8217s aborda este problema incluyendo dos constantes de suavizado, una para el nivel y otra para la tendencia. En cualquier momento t, como en el modelo Brown8217s, existe una estimación L t del nivel local y una estimación T t de la tendencia local. Aquí se calculan recursivamente a partir del valor de Y observado en el instante t y de las estimaciones previas del nivel y de la tendencia por dos ecuaciones que les aplican el suavizado exponencial separadamente. Si el nivel estimado y la tendencia en el tiempo t-1 son L t82091 y T t-1. Respectivamente, entonces la previsión de Y tshy que habría sido hecha en el tiempo t-1 es igual a L t-1 T t-1. Cuando se observa el valor real, la estimación actualizada del nivel se calcula recursivamente interpolando entre Y tshy y su pronóstico, L t-1 T t-1, utilizando pesos de 945 y 1-945. El cambio en el nivel estimado, Es decir L t 8209 L t82091. Puede interpretarse como una medida ruidosa de la tendencia en el tiempo t. La estimación actualizada de la tendencia se calcula recursivamente mediante la interpolación entre L t 8209 L t82091 y la estimación anterior de la tendencia, T t-1. Utilizando los pesos de 946 y 1-946: La interpretación de la constante de suavizado de tendencia 946 es análoga a la de la constante de suavizado de nivel 945. Los modelos con valores pequeños de 946 asumen que la tendencia cambia muy lentamente con el tiempo, mientras que los modelos con 946 más grandes suponen que está cambiando más rápidamente. Un modelo con una gran 946 cree que el futuro lejano es muy incierto, porque los errores en la estimación de la tendencia son muy importantes cuando se pronostica más de un período por delante. Las constantes de suavizado 945 y 946 se pueden estimar de la manera habitual minimizando el error cuadrático medio de las previsiones de 1 paso adelante. Cuando esto se hace en Statgraphics, las estimaciones resultan ser 945 0,3048 y 946 0,008. El valor muy pequeño de 946 significa que el modelo supone muy poco cambio en la tendencia de un período al siguiente, por lo que básicamente este modelo está tratando de estimar una tendencia a largo plazo. Por analogía con la noción de la edad media de los datos que se utilizan para estimar el nivel local de la serie, la edad media de los datos que se utilizan para estimar la tendencia local es proporcional a 1/946, aunque no exactamente igual a eso. En este caso, resulta ser 1 / 0.006 125. Esto no es un número muy preciso en la medida en que la precisión de la estimación de 946 es realmente de 3 decimales, pero es del mismo orden general de magnitud que el tamaño de la muestra de 100 , Por lo que este modelo está promediando bastante historia en la estimación de la tendencia. La gráfica de pronóstico siguiente muestra que el modelo LES calcula una tendencia local ligeramente mayor al final de la serie que la tendencia constante estimada en el modelo SEStrend. Además, el valor estimado de 945 es casi idéntico al obtenido ajustando el modelo SES con o sin tendencia, por lo que este es casi el mismo modelo. Ahora, ¿se ven como pronósticos razonables para un modelo que se supone que está estimando una tendencia local? Si observa esta gráfica, parece que la tendencia local se ha vuelto hacia abajo al final de la serie. Lo que ha ocurrido Los parámetros de este modelo Se han estimado minimizando el error al cuadrado de las previsiones de un paso adelante, y no las previsiones a largo plazo, en cuyo caso la tendencia no hace mucha diferencia. Si todo lo que usted está mirando son errores de un paso adelante, no está viendo la imagen más grande de las tendencias sobre (digamos) 10 o 20 períodos. Con el fin de obtener este modelo más en sintonía con la extrapolación de nuestro ojo de los datos, podemos ajustar manualmente la tendencia de suavizado constante de modo que utiliza una base más corta para la estimación de tendencia. Por ejemplo, si elegimos establecer 946 0.1, la edad promedio de los datos utilizados para estimar la tendencia local es de 10 períodos, lo que significa que estamos promediando la tendencia en los últimos 20 períodos aproximadamente. Here8217s lo que el pronóstico gráfico parece si fijamos 946 0.1 mientras que mantener 945 0.3. Esto parece intuitivamente razonable para esta serie, aunque probablemente sea peligroso extrapolar esta tendencia en más de 10 periodos en el futuro. ¿Qué pasa con las estadísticas de errores? Aquí hay una comparación de modelos para los dos modelos mostrados arriba, así como tres modelos SES. El valor óptimo de 945 para el modelo SES es de aproximadamente 0,3, pero se obtienen resultados similares (con un poco más o menos de capacidad de respuesta, respectivamente) con 0,5 y 0,2. (A) Holts lineal exp. Alisamiento con alfa 0.3048 y beta 0.008 (B) Holts linear exp. Alisamiento con alfa 0.3 y beta 0.1 (C) Alisamiento exponencial simple con alfa 0.5 (D) Alisamiento exponencial simple con alfa 0.3 (E) Suavizado exponencial simple con alfa 0.2 Sus estadísticas son casi idénticas, por lo que realmente no podemos hacer la elección sobre la base De errores de pronóstico de un paso adelante en la muestra de datos. Tenemos que recurrir a otras consideraciones. Si creemos firmemente que tiene sentido basar la estimación de tendencia actual en lo que ha ocurrido durante los últimos 20 períodos, podemos hacer un caso para el modelo LES con 945 0.3 y 946 0.1. Si queremos ser agnósticos acerca de si hay una tendencia local, entonces uno de los modelos SES podría ser más fácil de explicar y también daría más pronósticos intermedios para los próximos 5 o 10 períodos. (Volver al principio de la página.) Qué tipo de tendencia-extrapolación es la mejor: horizontal o lineal La evidencia empírica sugiere que, si los datos ya han sido ajustados (si es necesario) para la inflación, puede ser imprudente extrapolar lineal a corto plazo Tendencias en el futuro. Las tendencias evidentes hoy en día pueden desacelerarse en el futuro debido a diversas causas, como la obsolescencia de los productos, el aumento de la competencia y las caídas o repuntes cíclicos en una industria. Por esta razón, el suavizado exponencial simple a menudo realiza mejor fuera de la muestra de lo que de otra manera se podría esperar, a pesar de su extrapolación de tendencia horizontal de extracción horizontal. Las modificaciones de la tendencia amortiguada del modelo de suavizado exponencial lineal también se usan a menudo en la práctica para introducir una nota de conservadurismo en sus proyecciones de tendencia. El modelo LES con tendencia amortiguada se puede implementar como un caso especial de un modelo ARIMA, en particular, un modelo ARIMA (1,1,2). Es posible calcular intervalos de confianza en torno a los pronósticos a largo plazo producidos por modelos de suavizado exponencial, al considerarlos como casos especiales de modelos ARIMA. El ancho de los intervalos de confianza depende de (i) el error RMS del modelo, (ii) el tipo de suavizado (simple o lineal) (iii) el valor (S) de la (s) constante (s) de suavizado y (iv) el número de periodos por delante que está pronosticando. En general, los intervalos se extienden más rápidamente a medida que el 945 se hace más grande en el modelo SES y se extienden mucho más rápido cuando se usa lineal en lugar de simple suavizado. Este tema se discute más adelante en la sección de modelos de ARIMA de las notas. (Volver al inicio de la página.) Predicción por técnicas de suavizado Este sitio es una parte de los objetos de aprendizaje de JavaScript E-Labs para la toma de decisiones. Otros JavaScript de esta serie se clasifican en diferentes áreas de aplicaciones en la sección MENÚ de esta página. Una serie de tiempo es una secuencia de observaciones que se ordenan en el tiempo. Inherente en la recolección de datos tomados en el tiempo es una forma de variación al azar. Existen métodos para reducir la cancelación del efecto debido a la variación aleatoria. Las técnicas ampliamente utilizadas son el alisado. Estas técnicas, cuando se aplican correctamente, revelan con mayor claridad las tendencias subyacentes. Introduzca la serie de tiempo en orden de fila en secuencia, comenzando desde la esquina superior izquierda y los parámetros, luego haga clic en el botón Calcular para obtener una previsión de un período de tiempo. Las cajas en blanco no se incluyen en los cálculos, pero los ceros son. Al introducir los datos para pasar de celda a celda en la matriz de datos, utilice la tecla Tab no la flecha o las teclas de entrada. Características de las series temporales, que podrían revelarse al examinar su gráfico. Con los valores pronosticados, y el comportamiento de los residuos, modelado de predicción de condiciones. Promedios móviles: Las medias móviles se encuentran entre las técnicas más populares para el preprocesamiento de series de tiempo. Se utilizan para filtrar el ruido blanco aleatorio de los datos, para hacer la serie temporal más suave o incluso para enfatizar ciertos componentes informativos contenidos en la serie de tiempo. Suavizado exponencial: Este es un esquema muy popular para producir una serie temporal suavizada. Mientras que en Promedios móviles las observaciones anteriores se ponderan igualmente, el suavizado exponencial asigna pesos exponencialmente decrecientes a medida que la observación se hace mayor. En otras palabras, las observaciones recientes reciben un peso relativamente mayor en la predicción que las observaciones más antiguas. Double Exponential Smoothing es mejor para manejar las tendencias. Triple Exponential Smoothing es mejor en el manejo de las tendencias de la parábola. Un promedio móvil ponderado exponencialmente con una constante de suavizado a. Corresponde aproximadamente a una media móvil simple de longitud (es decir, periodo) n, donde a y n están relacionados por: a 2 / (n1) OR n (2 - a) / a. Así, por ejemplo, una media móvil exponencialmente ponderada con una constante de suavizado igual a 0,1 correspondería aproximadamente a un promedio móvil de 19 días. Y una media móvil simple de 40 días correspondería aproximadamente a una media móvil ponderada exponencialmente con una constante de suavizado igual a 0,04878. Holt Lineal Exponencial Suavizado: Suponga que la serie temporal no es estacional pero sí muestra la tendencia. El método Holts estima tanto el nivel actual como la tendencia actual. Observe que la media móvil simple es un caso especial del suavizado exponencial estableciendo el periodo de la media móvil en la parte entera de (2-Alpha) / Alpha. Para la mayoría de los datos empresariales, un parámetro Alpha menor de 0,40 suele ser efectivo. Sin embargo, se puede realizar una búsqueda de cuadrícula del espacio de parámetros, con 0,1 a 0,9, con incrementos de 0,1. Entonces el mejor alfa tiene el menor error absoluto medio (error MA). Cómo comparar varios métodos de suavizado: Aunque existen indicadores numéricos para evaluar la precisión de la técnica de pronóstico, el enfoque más amplio consiste en utilizar la comparación visual de varios pronósticos para evaluar su exactitud y elegir entre los diversos métodos de pronóstico. En este enfoque, se debe trazar (utilizando, por ejemplo, Excel) en el mismo gráfico los valores originales de una variable de serie temporal y los valores predichos de varios métodos de pronóstico diferentes, facilitando así una comparación visual. Es posible que desee utilizar las previsiones pasadas mediante técnicas de suavizado JavaScript para obtener los valores de pronóstico anteriores basados ​​en técnicas de suavizado que utilizan sólo un parámetro. Holt y Winters usan dos y tres parámetros, respectivamente, por lo que no es una tarea fácil seleccionar los valores óptimos, o incluso casi óptimos, por ensayo y errores para los parámetros. El único suavizado exponencial enfatiza la perspectiva de corto alcance que fija el nivel a la última observación y se basa en la condición de que no hay tendencia. La regresión lineal, que se ajusta a una línea de mínimos cuadrados a los datos históricos (o datos históricos transformados), representa el largo alcance, que está condicionado por la tendencia básica. El alineamiento exponencial lineal de Holts captura la información sobre la tendencia reciente. Los parámetros en el modelo de Holts son los niveles-parámetro que deben ser disminuidos cuando la cantidad de variación de los datos es grande, y tendencias-parámetro debe ser aumentado si la dirección de la tendencia reciente es apoyada por la causal algunos factores. Pronóstico a Corto Plazo: Observe que cada JavaScript en esta página proporciona un pronóstico de un paso adelante. Obtener un pronóstico de dos pasos adelante. Simplemente agregue el valor pronosticado al final de los datos de la serie temporal y luego haga clic en el mismo botón Calcular. Puede repetir este proceso varias veces para obtener las previsiones a corto plazo necesarias.
Tecnología de sistemas digitales de comercio
Forex forint szгўmla