Imagen del filtro de media móvil

Imagen del filtro de media móvil

Software para la negociación de opciones en la India
Dólar de la divisa a la tarifa del peso
Opciones de saltos


Forex_trading_price_action_setups_2012 Huruf_binary_options Forex_hedging_binary_options Opciones Binarias Spot_forex_taxation Permiso de intercambio de opciones Forex gadget windows 7

Como otros han mencionado, debe considerar un filtro IIR (respuesta de impulso infinito) en lugar del filtro FIR (respuesta de impulso finito) que está utilizando ahora. Hay más, pero a primera vista los filtros FIR se implementan como convoluciones explícitas y filtros IIR con ecuaciones. El filtro IIR particular que uso mucho en los microcontroladores es un filtro de paso simple de un solo paso. Este es el equivalente digital de un simple filtro analógico R-C. Para la mayoría de las aplicaciones, éstas tendrán mejores características que el filtro de caja que está utilizando. La mayoría de los usos de un filtro de caja que he encontrado son el resultado de alguien que no presta atención en la clase de procesamiento de señal digital, no como resultado de necesitar sus características particulares. Si sólo desea atenuar las altas frecuencias que usted sabe son el ruido, un filtro de un solo paso de paso bajo es mejor. La mejor manera de implementar uno digitalmente en un microcontrolador es generalmente: FILT lt-- FILT FF (NEW-FILT) FILT es una pieza de estado persistente. Esta es la única variable persistente que necesita para calcular este filtro. NUEVO es el nuevo valor que se está actualizando el filtro con esta iteración. FF es la fracción del filtro. Que ajusta la pesadez del filtro. Mire este algoritmo y vea que para FF 0 el filtro es infinitamente pesado ya que la salida nunca cambia. Para FF 1, su realmente ningún filtro en absoluto, ya que la salida sólo sigue la entrada. Los valores útiles están intermedios. En los sistemas pequeños, se selecciona FF para que sea 1/2 N de modo que la multiplicación por FF se pueda realizar como un desplazamiento a la derecha por N bits. Por ejemplo, FF puede ser 1/16 y multiplicar por FF por lo tanto un desplazamiento a la derecha de 4 bits. De lo contrario este filtro sólo necesita un substracto y un agregado, aunque los números generalmente necesitan ser más anchos que el valor de entrada (más en precisión numérica en una sección separada a continuación). Normalmente tomo lecturas de A / D mucho más rápido de lo que se necesitan y aplico dos de estos filtros en cascada. Este es el equivalente digital de dos filtros R-C en serie, y se atenúa por 12 dB / octava por encima de la frecuencia de rolloff. Sin embargo, para las lecturas de A / D su generalmente más relevante mirar el filtro en el dominio del tiempo considerando su respuesta del paso. Esto le indica qué tan rápido su sistema verá un cambio cuando cambie la cosa que está midiendo. Para facilitar el diseño de estos filtros (que sólo significa escoger FF y decidir cuantos de ellos a la cascada), uso mi programa FILTBITS. Se especifica el número de bits de cambio para cada FF en la serie de filtros en cascada y se calcula la respuesta de paso y otros valores. En realidad, por lo general, ejecutar esto a través de mi script wrapper PLOTFILT. Esto ejecuta FILTBITS, que hace un archivo CSV, luego traza el archivo CSV. Por ejemplo, aquí está el resultado de PLOTFILT 4 4: Los dos parámetros de PLOTFILT significan que habrá dos filtros en cascada del tipo descrito anteriormente. Los valores de 4 indican el número de bits de cambio para realizar la multiplicación por FF. Los dos valores FF son por lo tanto 1/16 en este caso. El rastro rojo es la respuesta de la etapa de la unidad, y es la cosa principal a mirar. Por ejemplo, esto le dice que si la entrada cambia instantáneamente, la salida del filtro combinado se establecerá en 90 del nuevo valor en 60 iteraciones. Si te importa el tiempo de solución de 95, entonces usted tiene que esperar alrededor de 73 iteraciones, y por 50 tiempo de solución sólo 26 iteraciones. El rastro verde le muestra la salida de una sola espiga de amplitud completa. Esto le da una idea de la supresión de ruido aleatorio. Parece que ninguna muestra causará más de un cambio de 2.5 en la salida. El rastro azul es dar una sensación subjetiva de lo que hace este filtro con el ruido blanco. Esto no es una prueba rigurosa, ya que no hay garantía de que exactamente el contenido de los números aleatorios elegidos como el ruido blanco de entrada para esta ejecución de PLOTFILT. Es sólo para darle una sensación áspera de cuánto será aplastado y lo suave que es. PLOTFILT, tal vez FILTBITS, y muchas otras cosas útiles, especialmente para el desarrollo de firmware PIC está disponible en la versión de software PIC Development Tools en mi página de descargas de software. Agregado acerca de la precisión numérica veo de los comentarios y ahora una nueva respuesta que hay interés en discutir el número de bits necesarios para implementar este filtro. Tenga en cuenta que la multiplicación por FF creará Log 2 (FF) nuevos bits por debajo del punto binario. En sistemas pequeños, FF se elige generalmente para ser 1/2 N de modo que esta multiplicación se realice realmente por un desplazamiento a la derecha de N bits. FILT es por lo tanto un entero de punto fijo. Tenga en cuenta que esto no cambia ninguna de las matemáticas desde el punto de vista de los procesadores. Por ejemplo, si está filtrando lecturas A / D de 10 bits y N 4 (FF 1/16), entonces necesita 4 bits de fracción por debajo de las lecturas A / D de enteros de 10 bits. Uno de los procesadores más, youd estar haciendo operaciones enteras de 16 bits debido a las lecturas de 10 bits A / D. En este caso, todavía puede hacer exactamente las mismas operaciones enteras de 16 bits, pero comience con las lecturas A / D a la izquierda desplazadas por 4 bits. El procesador no sabe la diferencia y no necesita. Hacer la matemática en todo enteros de 16 bits funciona si usted los considera 12,4 puntos fijos o enteros verdaderos de 16 bits (16,0 puntos fijos). En general, es necesario agregar N bits cada polo de filtro si no desea añadir ruido debido a la representación numérica. En el ejemplo anterior, el segundo filtro de dos tendría que tener 1044 18 bits para no perder información. En la práctica en una máquina de 8 bits que significa youd utilizar valores de 24 bits. Técnicamente sólo el segundo polo de dos necesitaría el valor más amplio, pero para la simplicidad del firmware usualmente utilizo la misma representación, y por lo tanto el mismo código, para todos los polos de un filtro. Normalmente escribo una subrutina o macro para realizar una operación de polo de filtro, y luego aplicarla a cada polo. Si una subrutina o macro depende de si los ciclos o la memoria del programa son más importantes en ese proyecto en particular. De cualquier manera, utilizo un cierto estado del rasguño para pasar NUEVO en la subrutina / la macro, que pone al día FILT, pero también las cargas que en el mismo estado del rasguño NUEVO estaba pulg. Esto hace fácil aplicar los postes múltiples puesto que el FILT actualizado de un poste es El NUEVO de la siguiente. Cuando una subrutina, es útil tener un puntero apuntan a FILT en el camino, que se actualiza justo después de FILT a la salida. De esta manera la subrutina opera automáticamente en filtros consecutivos en memoria si se llama varias veces. Con una macro usted no necesita un puntero puesto que usted pasa en la dirección para funcionar en cada iteración. Ejemplos de código Aquí hay un ejemplo de una macro como se describe anteriormente para un PIC 18: Y aquí hay una macro similar para un PIC 24 o dsPIC 30 o 33: Ambos ejemplos se implementan como macros utilizando mi preprocesador de ensamblador PIC. Que es más capaz que cualquiera de las instalaciones macro incorporadas. Clabacchio: Otro problema que debería haber mencionado es la implementación de firmware. Puede escribir una subrutina de filtro de paso bajo de un solo polo una vez, luego aplicarla varias veces. De hecho, por lo general escribo una subrutina de este tipo para tomar un puntero en la memoria al estado del filtro, a continuación, hacer avanzar el puntero para que pueda ser llamado en sucesión fácilmente para realizar filtros multipolar. Ndash Olin Lathrop Apr 20 12 at 15:03 1. Muchas gracias por sus respuestas - todas ellas. Decidí usar este filtro IIR, pero este filtro no se utiliza como un filtro LowPass estándar, ya que necesito valorar los valores promedio de los contadores y compararlos para detectar cambios en un determinado rango. Ya que estos Valores van de dimensiones muy diferentes dependiendo de Hardware que quería tomar un promedio para poder reaccionar a estos cambios específicos de hardware automáticamente. Ndash sensslen May 21 12 at 12:06 Si se puede vivir con la restricción de un poder de dos números de elementos a la media (es decir, 2,4,8,16,32 etc), entonces la división se puede hacer fácil y eficientemente en un De bajo rendimiento micro sin división dedicada, ya que se puede hacer como un cambio de bits. Cada turno a la derecha es una potencia de dos por ejemplo: El OP pensó que tenía dos problemas, dividiendo en un PIC16 y la memoria para su amortiguador de anillo. Esta respuesta muestra que la división no es difícil. Es cierto que no aborda el problema de la memoria, pero el sistema SE permite respuestas parciales, y los usuarios pueden tomar algo de cada respuesta por sí mismos, o incluso editar y combinar las respuestas de otros. Dado que algunas de las otras respuestas requieren una operación de división, son igualmente incompletas, ya que no muestran cómo lograr esto de manera eficiente en un PIC16. Ndash Martin Apr 20 12 at 13:01 Hay una respuesta para un verdadero filtro de media móvil (también conocido como filtro de caja) con menos requisitos de memoria, si no te importa el downsampling. Su llamado un filtro integrador-peine en cascada (CIC). La idea es que usted tiene un integrador que tomar las diferencias de más de un período de tiempo, y la clave de ahorro de memoria dispositivo es que mediante el muestreo, no tienes que almacenar todos los valores del integrador. Se puede implementar utilizando el pseudocódigo siguiente: Su longitud media móvil efectiva es decimationFactorstatesize, pero sólo necesita mantener alrededor de las muestras de estado. Obviamente, puede obtener un mejor rendimiento si su stateize y decimationFactor son potencias de 2, de modo que la división y los operadores de resto se sustituye por cambios y máscara-ands. Postscript: Estoy de acuerdo con Olin que siempre debe considerar simples filtros IIR antes de un filtro de media móvil. Si no necesita la frecuencia-nulos de un filtro de vagón, un filtro de paso bajo de 1 o 2 polos probablemente funcione bien. Por otro lado, si está filtrando para fines de decimación (tomando una entrada de alta tasa de muestreo y promediándola para su uso por un proceso de baja velocidad) entonces un filtro de CIC puede ser justo lo que está buscando. (Especialmente si se puede usar statesize1 y evitar el ringbuffer en conjunto con sólo un único valor de integrador anterior) Theres algunos análisis en profundidad de la matemática detrás de la utilización de la primera orden IIR filtro que Olin Lathrop ya ha descrito en el Digital Signal Processing stack exchange (Incluye muchas imágenes bonitas). La ecuación para este filtro IIR es: Esto se puede implementar usando sólo números enteros y sin división usando el siguiente código (podría necesitar un poco de depuración como estaba escribiendo desde la memoria.) Este filtro se aproxima a una media móvil de Los últimos K muestras estableciendo el valor de alfa a 1 / K. Hacer esto en el código precedente definiendo BITS a LOG2 (K), es decir para K 16 fijado BITS a 4, para K 4 fijado BITS a 2, etc. (Mal verificar el código enumerado aquí tan pronto como consiga un cambio y Edite esta respuesta si es necesario.) Respondió Jun 23 12 at 4:04 Heres un filtro de paso bajo de un solo polo (promedio móvil, con frecuencia de corte CutoffFrequency). Muy simple, muy rápido, funciona muy bien, y casi no hay sobrecarga de memoria. Nota: Todas las variables tienen un alcance más allá de la función de filtro, excepto la pasada en newInput Nota: Este es un filtro de una sola etapa. Múltiples etapas se pueden conectar en cascada para aumentar la nitidez del filtro. Si utiliza más de una etapa, tendrá que ajustar DecayFactor (en relación con la frecuencia de corte) para compensar. Y, obviamente, todo lo que necesita son las dos líneas colocadas en cualquier lugar, no necesitan su propia función. Este filtro tiene un tiempo de aceleración antes de que el promedio móvil represente el de la señal de entrada. Si necesita omitir ese tiempo de aceleración, sólo puede inicializar MovingAverage al primer valor de newInput en lugar de 0 y esperar que el primer newInput no sea un outlier. (CutoffFrequency / SampleRate) tiene un intervalo entre 0 y 0,5. DecayFactor es un valor entre 0 y 1, por lo general cerca de 1. Flotadores de precisión simple son lo suficientemente buenos para la mayoría de las cosas, sólo prefiero dobles. Si necesitas pegarte con números enteros, puedes convertir DecayFactor y Factor de Amplitud en enteros fraccionarios, en los que el numerador se almacena como el entero, y el denominador es una potencia entera de 2 (así puedes cambiar a la derecha como el número Denominador en vez de tener que dividir durante el bucle del filtro). Por ejemplo, si DecayFactor 0.99 y desea utilizar números enteros, puede establecer DecayFactor 0.99 65536 64881. Y luego, cada vez que multiplique por DecayFactor en su bucle de filtro, simplemente cambie el resultado 16. Para más información sobre esto, En línea, capítulo 19 sobre filtros recursivos: dspguide / ch19.htm PS Para el paradigma de media móvil, un enfoque diferente para establecer DecayFactor y AmplitudeFactor que puede ser más relevante para sus necesidades, digamos que desea que el anterior, alrededor de 6 elementos promediados juntos, hacerlo discretamente, youd añadir 6 elementos y dividir por 6, por lo que Puede establecer el AmplitudeFactor a 1/6, y DecayFactor a (1.0 - AmplitudeFactor). Respondió 14 de mayo a las 22:55 Todo el mundo ha comentado a fondo sobre la utilidad de IIR vs FIR, y en la división de poder de dos. La identificación apenas tiene gusto de dar algunos detalles de la puesta en práctica. Lo siguiente funciona bien en pequeños microcontroladores sin FPU. No hay multiplicación, y si mantienes N una potencia de dos, toda la división es de un solo ciclo de desplazamiento de bits. Búfer de anillo FIR básico: guarda un buffer de ejecución de los últimos N valores, y una SUM corriente de todos los valores en el búfer. Cada vez que llega una nueva muestra, resta el valor más antiguo en el buffer de SUM, reemplázalo por el nuevo, añada la nueva muestra a SUM y SUM / N. Búfer de anillo IIR modificado: mantener una SUM corriente de los últimos N valores. Cada vez que llega una nueva muestra, SUM - SUM / N, agregue la nueva muestra, y la salida SUM / N. Si le estoy leyendo bien, usted está describiendo un filtro IIR de primer orden, el valor que está restar es el valor más antiguo que está cayendo, pero es el promedio de los valores anteriores. Los filtros IIR de primer orden pueden sin duda ser útiles, pero no estoy seguro de lo que quiere decir cuando sugiere que la salida es la misma para todas las señales periódicas. A una frecuencia de muestreo de 10KHz, alimentar una onda cuadrada de 100Hz en un filtro de caja de 20 etapas producirá una señal que se eleva uniformemente para 20 muestras, se sienta alto para 30, cae uniformemente para 20 muestras y se sienta bajo para 30. Un primer orden Filtro IIR. Ndash supercat Aug 28 13 a las 15:31 producirá una onda que comienza a subir bruscamente y gradualmente se nivela cerca (pero no en) el máximo de entrada, luego empieza a caer bruscamente y gradualmente se nivela cerca (pero no) del mínimo de entrada. Comportamiento muy diferente. Ndash supercat August 28 13 at 15:32 Un problema es que un simple promedio móvil puede o no ser útil. Con un filtro IIR, puede obtener un filtro agradable con relativamente pocos calcs. La FIR que usted describe sólo puede darle un rectángulo en el tiempo - un sinc en freq - y no puede administrar los lóbulos laterales. Puede ser bien vale la pena para lanzar en un número entero multiplica para que sea una buena sintonía sintonizable FIR si se puede ahorrar las garrapatas del reloj. Ndash Scott Seidman: No hay necesidad de multiplicar si uno simplemente tiene cada etapa de la FIR o la salida de la media de la entrada a esa etapa y su valor almacenado anterior, y luego almacenar la entrada (si se tiene El rango numérico, se podría usar la suma en lugar de la media). Si ese filtro es mejor que un filtro de caja depende de la aplicación (la respuesta de paso de un filtro de caja con un retardo total de 1ms, por ejemplo, tendrá un pico d2 / dt desagradable cuando el cambio de entrada y 1ms más tarde, pero tendrá El mínimo posible d / dt para un filtro con un retraso total de 1ms). Ndash supercat Como dijo mikeselectricstuff, si realmente necesita reducir sus necesidades de memoria, y no te importa su respuesta al impulso que es un exponencial (en lugar de un pulso rectangular), me gustaría ir para un filtro de media móvil exponencial . Los uso ampliamente. Con ese tipo de filtro, usted no necesita ningún búfer. Usted no tiene que almacenar N muestras pasadas. Solo uno. Por lo tanto, sus requisitos de memoria se redujo por un factor de N. También, no necesita ninguna división para eso. Sólo multiplicaciones. Si tiene acceso a aritmética de punto flotante, use multiplicaciones de coma flotante. De lo contrario, haga multiplicaciones enteras y desplaza hacia la derecha. Sin embargo, estamos en 2012, y te recomiendo que utilices compiladores (y MCUs) que te permitan trabajar con números de coma flotante. Además de ser más eficiente de la memoria y más rápido (usted no tiene que actualizar los elementos en cualquier búfer circular), yo diría que es también más natural. Porque una respuesta de impulso exponencial coincide mejor con la forma en que se comporta la naturaleza, en la mayoría de los casos. Un problema con el filtro IIR como casi tocado por olin y supercat pero aparentemente ignorado por otros es que el redondeo abajo introduce cierta imprecisión (y potencialmente sesgo / truncamiento). Suponiendo que N es una potencia de dos, y sólo se utiliza la aritmética entera, el turno de derecha elimina sistemáticamente los LSB de la nueva muestra. Eso significa que la duración de la serie nunca podría ser, el promedio nunca tendrá en cuenta. Por ejemplo, supongamos una serie que disminuye lentamente (8, 8, 8, 7, 7, 7, 7, 6, 6) y asuma que el promedio es realmente 8 al principio. La muestra del puño 7 llevará la media a 7, independientemente de la resistencia del filtro. Sólo para una muestra. La misma historia para 6, etc. Ahora piensa en lo opuesto. La serie sube. El promedio se mantendrá en 7 para siempre, hasta que la muestra es lo suficientemente grande como para que cambie. Por supuesto, puede corregir el sesgo añadiendo 1 / 2N / 2, pero eso no resolverá realmente el problema de precisión. En ese caso la serie decreciente permanecerá para siempre en 8 hasta que la muestra sea 8-1 / 2 (N / 2). Para N4 por ejemplo, cualquier muestra por encima de cero mantendrá el promedio sin cambios. Creo que una solución para eso implicaría mantener un acumulador de los LSB perdidos. Pero no lo hice lo suficientemente lejos para tener el código listo, y no estoy seguro de que no perjudicaría la potencia IIR en algunos otros casos de series (por ejemplo, si 7,9,7,9 promedio a 8 entonces). Olin, su cascada de dos etapas también necesitaría alguna explicación. ¿Se refiere a la celebración de dos valores medios con el resultado de la primera alimentado en el segundo en cada iteración. ¿Cuál es el beneficio de este MOVIMIENTO FILTRO MEDIO Hay muchos tipos diferentes de filtros que puede escribir, y el vehículo furgoneta (o media móvil, como lo llamó) o filtro rectangular es sólo uno de ellos. Aquí hay una comparación de una variedad de filtros, y el tipo de efecto que pueden tener en sus datos, en función de la frecuencia. Para hacer un simple filtro de media móvil, sólo tiene que sumar los datos, a continuación, dividir por el número de elementos de datos. Si agrega todos los elementos cada vez que calcula el promedio, le costará n adiciones más una división. Por otro lado, si mantiene un registro de donde se encuentran los datos más antiguos, a medida que los datos avanza, simplemente agrega los nuevos datos, resta los datos más antiguos y vuelve a realizar la división. Este método solo te cuesta una sola adición, una sola resta y una división. Mucho mas rápido. No escribiré el código para usted. Espero que esto ayude, though.I necesidad de diseñar un filtro de media móvil que tiene una frecuencia de corte de 7,8 Hz. He utilizado filtros de media móvil antes, pero por lo que estoy enterado, el único parámetro que se puede alimentar es el número de puntos que se promedian. ¿Cómo puede esto relacionarse con una frecuencia de corte? El inverso de 7,8 Hz es de 130 ms, e Im trabajando con datos que se muestrean a 1000 Hz. ¿Esto implica que debo usar un tamaño de ventana de filtro de media móvil de 130 muestras, o hay algo más que falta aquí pidió Jul 18 13 en 9:52 El filtro de media móvil es el filtro utilizado en el dominio de tiempo para eliminar El ruido añadido y también para el propósito de suavizado, pero si utiliza el mismo filtro de media móvil en el dominio de frecuencia para la separación de frecuencia, el rendimiento será peor. Por lo que en ese caso el uso de filtros de dominio de frecuencia ndash user19373 Feb 3 at 5:53 El filtro de media móvil (a veces conocido coloquialmente como un filtro boxcar) tiene una respuesta de impulso rectangular: O, declarado de manera diferente: Recordando que una respuesta de frecuencia de sistemas de tiempo discreto Igual a la transformada de Fourier de tiempo discreto de su respuesta de impulso, podemos calcularlo como sigue: Lo que más le interesó a su caso es la respuesta de magnitud del filtro, H (omega). Utilizando un par de manipulaciones simples, podemos obtener que en una forma más fácil de comprender: Esto puede no parecer más fácil de entender. Sin embargo, debido a la identidad de Eulers. Recuerde que: Por lo tanto, podemos escribir lo anterior como: Como he dicho antes, lo que realmente te preocupa es la magnitud de la respuesta de frecuencia. Por lo tanto, podemos tomar la magnitud de lo anterior para simplificarlo más: Nota: Somos capaces de eliminar los términos exponenciales porque no afectan a la magnitud del resultado e 1 para todos los valores de omega. Puesto que xy xy para dos complejos finitos xyy, podemos concluir que la presencia de los términos exponenciales no afecta a la respuesta de magnitud global (en cambio, afectan a la respuesta de fase de los sistemas). La función resultante dentro de los soportes de magnitud es una forma de un núcleo de Dirichlet. A veces se denomina función de sinc periódica, porque se asemeja a la función sinc en apariencia, pero es periódica. De todos modos, ya que la definición de la frecuencia de corte es un poco underspecified (-3 dB punto -6 dB punto primer sidelobe nulo), puede utilizar la ecuación anterior para resolver lo que necesita. Específicamente, puede hacer lo siguiente: Establezca H (omega) en el valor correspondiente a la respuesta del filtro que desea en la frecuencia de corte. Ajuste omega igual a la frecuencia de corte. Para asignar una frecuencia de tiempo continuo al dominio de tiempo discreto, recuerde que omega 2pi frac, donde fs es su tasa de muestreo. Encuentre el valor de N que le da el mejor acuerdo entre los lados izquierdo y derecho de la ecuación. Que debe ser la longitud de su promedio móvil. Si N es la longitud de la media móvil, entonces una frecuencia de corte aproximada F (válida para N gt 2) en la frecuencia normalizada Ff / fs es: La inversa de esta es Esta fórmula es asintóticamente correcta para N grande, y tiene alrededor de 2 para N2 y menos de 0,5 para N4. PD Después de dos años, aquí finalmente lo que fue el enfoque seguido. El resultado se basó en aproximar el espectro de amplitud de MA alrededor de f0 como una parábola (serie de segundo orden) de acuerdo con MA (Omega) aproximadamente 1 (frac-fra) Omega2 que se puede hacer más exacta cerca del cruce cero de MA (Omega) Frac por multiplicar Omega por un coeficiente obteniendo MA (Omega) aprox. 10.907523 (frac -frac) Omega2 La solución de MA (Omega) -frac 0 da los resultados anteriores, donde 2pi F Omega. Todo lo anterior se refiere a la frecuencia de corte -3dB, el sujeto de este post. A veces, aunque es interesante obtener un perfil de atenuación en banda de parada que es comparable con el de un filtro de paso bajo IIR de primer orden (LPF de un solo polo) con una frecuencia de corte de -3 dB determinada (un LPF de este tipo también se llama integrador con fugas, Teniendo un poste no exactamente en DC pero cerca de él). De hecho tanto el MA como el LPF de primer orden IIR tienen una pendiente de -20dB / década en la banda de parada (se necesita un N mayor que el usado en la figura, N32, para ver esto), mientras que MA tiene nulos espectrales en Fk / N y un 1 / f evelope, el filtro IIR sólo tiene un perfil 1 / f. Si se desea obtener un filtro MA con capacidades de filtrado de ruido similares a las de este filtro IIR, y coincide con las frecuencias de corte de 3dB para que sean las mismas, al comparar los dos espectros, se daría cuenta de que la ondulación de banda de parada del filtro MA termina 3dB por debajo de la del filtro IIR. Para obtener la misma ondulación de banda de parada (es decir, la misma atenuación de potencia de ruido) que el filtro IIR, las fórmulas se pueden modificar de la siguiente manera: Encontré de nuevo el script de Mathematica donde calculé el corte de varios filtros, incluyendo el MA. El resultado se basó en aproximar el espectro de MA alrededor de f0 como parábola según MA (Omega) Sin (OmegaN / 2) / Sin (Omega / 2) Omega 2piF MA (F) aproximadamente N1 / 6F2 (N-N3) pi2. Y derivando el cruce con 1 / sqrt desde allí. Ndash Massimo Jan 17 a las 2:08
Forex steam ea revisión
Opciones Binarias   Robot   Results_of_texas