Filtro promedio móvil en código c

Filtro promedio móvil en código c

Comercio de opción de caja de tres patas
Binary_option_bot_review
0x2f_in_binary_option


0x2c_binary_options Free_binary_options_strategy Opciones Binarias Uk Opciones Binarias Trading Canal Benoni Sistema de comercio Fifa 13 Opciones de Am naik

¿Es posible implementar una media móvil en C sin necesidad de una ventana de muestras? He encontrado que puedo optimizar un poco, eligiendo un tamaño de ventana que es una potencia de dos para permitir el cambio de bits en lugar de dividir, pero no necesitar Un buffer sería bueno. ¿Existe una manera de expresar un nuevo promedio móvil sólo como una función del resultado anterior y la nueva muestra Definir un ejemplo de media móvil, a través de una ventana de 4 muestras para ser: Agregar nueva muestra e: Un promedio móvil se puede implementar recursivamente , Pero para un cálculo exacto de la media móvil tiene que recordar la más antigua muestra de entrada en la suma (es decir, el a en su ejemplo). Para una longitud N de media móvil se calcula: donde yn es la señal de salida y xn es la señal de entrada. Eq. (1) se puede escribir recursivamente como Así que siempre necesita recordar la muestra xn-N para calcular (2). Como señaló Conrad Turner, puede usar una ventana exponencial (infinitamente larga) que le permite calcular la salida sólo de la salida anterior y la entrada actual: pero esto no es una media móvil estándar (no ponderada), sino una relación exponencial (Por lo menos en teoría) nunca se olvida nada (los pesos sólo se hacen más pequeños y más pequeños para las muestras en el pasado). Implementé un promedio móvil sin memoria de elementos individuales para un programa de seguimiento GPS que escribí. Empiezo con 1 muestra y divido por 1 para obtener la media actual. A continuación, añadir otra muestra y dividir por 2 a la actual media. Esto continúa hasta que consigo a la longitud del promedio. Cada vez después, agrego la nueva muestra, obtengo el promedio y elimino ese promedio del total. No soy un matemático, pero esto parecía una buena manera de hacerlo. Pensé que se convertiría en el estómago de un verdadero matemático, pero, resulta que es una de las maneras aceptadas de hacerlo. Y funciona bien. Sólo recuerde que cuanto más alto sea su longitud, más lento seguirá lo que desea seguir. Eso puede no importar la mayor parte del tiempo pero al seguir los satélites, si usted es lento, el rastro podría estar lejos de la posición real y parecerá malo. Usted podría tener una brecha entre el sat y los puntos finales. Elegí una longitud de 15 actualizado 6 veces por minuto para obtener suavizado adecuado y no llegar demasiado lejos de la posición real sentado con los puntos de pista suavizada. Respondió el 16 de noviembre a las 23:03 inicializar total 0, count0 (cada vez que vea un nuevo valor Entonces una entrada (scanf), una agregar totalnewValue, un incremento (count), un promedio de división (total / count) Sobre todas las entradas Para calcular el promedio sólo en las últimas 4 entradas, se requerirían 4 variables de entrada, tal vez copiando cada entrada a una variable de entrada más antigua, luego calculando la nueva media móvil como suma de las 4 variables de entrada, dividida por 4 Ser bueno si todos los insumos fueron positivos para hacer que el promedio de cálculo respondido Feb 3 15 at 4:06 Eso calculará realmente el promedio total y NO el promedio móvil A medida que el conteo se hace más grande el impacto de cualquier nueva muestra de entrada se vuelve ndsh Feb 3 15 at 13:53 Su respuesta 2016 Stack Exchange, IncConsiente que esto es alcanzable con el impulso como por: Pero realmente me gustaría evitar el uso de impulso.He googled y no encontró ningún ejemplo adecuado o legible.Basicamente, quiero seguir El promedio móvil de una corriente en curso de una corriente de números de punto flotante usando los números 1000 más recientes como una muestra de datos. ¿Cuál es la manera más fácil de lograr esto que experimenté con el uso de una matriz circular, media móvil exponencial y una media móvil más simple y encontró que los resultados de la matriz circular se adapta a mis necesidades mejor. Si sus necesidades son simples, puede intentar usar una media móvil exponencial. Puesto simplemente, usted hace una variable del acumulador, y como su código mira cada muestra, el código actualiza el acumulador con el nuevo valor. Usted escoge un alfa constante que está entre 0 y 1, y calcule esto: Usted apenas necesita encontrar un valor del alfa donde el efecto de una muestra dada dura solamente cerca de 1000 muestras. Hmm, no estoy realmente seguro de que esto es adecuado para usted, ahora que he puesto aquí. El problema es que 1000 es una ventana bastante larga para un promedio móvil exponencial No estoy seguro de que haya un alpha que se extendería el promedio en los últimos 1000 números, sin subflujo en el cálculo del punto flotante. Pero si usted quisiera un promedio más pequeño, como 30 números o tan, esto es una manera muy fácil y rápida de hacerla. Respondió 12 de junio a las 4:44 1 en su puesto. El promedio móvil exponencial puede permitir que el alfa sea variable. Así, esto permite que se utilice para calcular promedios de base de tiempo (por ejemplo, bytes por segundo). Si el tiempo transcurrido desde la última actualización del acumulador es de más de 1 segundo, deje que alfa sea 1.0. De lo contrario, puede permitir que alpha be (usecs desde la última actualización / 1000000). Ndash jxh 12 de junio a las 6:21 Básicamente, quiero seguir el promedio móvil de una corriente en curso de una corriente de números de punto flotante usando los números 1000 más recientes como una muestra de datos. Tenga en cuenta que el siguiente actualiza el total como elementos añadidos / reemplazados, evitando costosos recorridos O (N) para calcular la suma - necesaria para el promedio - a la demanda. Total se hace un parámetro diferente de T a soporte, p. Usando un largo largo cuando totalizan 1000 long s, un int para char s, o un doble a total float s. Esto es un poco defectuoso en que numsamples podría ir más allá de INTMAX - si te importa que podría utilizar un unsigned mucho tiempo. O utilice un miembro de datos de bool extra para grabar cuando el contenedor se rellena primero mientras cicla numsamples alrededor de la matriz (mejor entonces cambia el nombre de algo inocuo como pos). Respondió el 12 de Junio ​​12 a las 5:19 se supone que el operador quotvoid (T sample) quot es realmente operador quotvoid (T sample) quot. Ndash oPless Jun 8 14 at 11:52 oPless ahhh. bien descrito. En realidad quería que fuera para ser operador vacío () (T muestra), pero por supuesto, usted podría utilizar cualquier notación que te gustaba. Se arreglará, gracias. Como otros han mencionado, debe considerar un filtro IIR (respuesta de impulso infinita) en lugar del filtro FIR (respuesta de impulso finito) que está usando ahora. Hay más, pero a primera vista los filtros FIR se implementan como convoluciones explícitas y filtros IIR con ecuaciones. El filtro IIR particular que uso mucho en los microcontroladores es un filtro de paso simple de un solo paso. Este es el equivalente digital de un simple filtro analógico R-C. Para la mayoría de las aplicaciones, éstas tendrán mejores características que el filtro de caja que está utilizando. La mayoría de los usos de un filtro de caja que he encontrado son el resultado de alguien que no presta atención en la clase de procesamiento de señal digital, no como resultado de necesitar sus características particulares. Si sólo desea atenuar las altas frecuencias que usted sabe son el ruido, un filtro de un solo paso de paso bajo es mejor. La mejor manera de implementar uno digitalmente en un microcontrolador es generalmente: FILT lt-- FILT FF (NEW-FILT) FILT es una pieza de estado persistente. Esta es la única variable persistente que necesita para calcular este filtro. NUEVO es el nuevo valor que se está actualizando el filtro con esta iteración. FF es la fracción del filtro. Que ajusta la pesadez del filtro. Mire este algoritmo y vea que para FF 0 el filtro es infinitamente pesado ya que la salida nunca cambia. Para FF 1, su realmente ningún filtro en absoluto, ya que la salida sólo sigue la entrada. Los valores útiles están intermedios. En los sistemas pequeños, se selecciona FF para que sea 1/2 N, de modo que la multiplicación por FF se puede realizar como un desplazamiento a la derecha por N bits. Por ejemplo, FF puede ser 1/16 y multiplicar por FF por lo tanto un desplazamiento a la derecha de 4 bits. De lo contrario este filtro sólo necesita un substracto y un agregado, aunque los números generalmente necesitan ser más anchos que el valor de entrada (más en precisión numérica en una sección separada a continuación). Normalmente tomo lecturas de A / D mucho más rápido de lo que se necesitan y aplico dos de estos filtros en cascada. Este es el equivalente digital de dos filtros R-C en serie, y se atenúa por 12 dB / octava por encima de la frecuencia de rolloff. Sin embargo, para las lecturas de A / D su generalmente más relevante mirar el filtro en el dominio del tiempo considerando su respuesta del paso. Esto le indica cuán rápido su sistema verá un cambio cuando cambie la cosa que está midiendo. Para facilitar el diseño de estos filtros (que sólo significa escoger FF y decidir cuantos de ellos a la cascada), uso mi programa FILTBITS. Se especifica el número de bits de cambio para cada FF en la serie de filtros en cascada y se calcula la respuesta de paso y otros valores. En realidad, por lo general, ejecutar esto a través de mi script wrapper PLOTFILT. Esto ejecuta FILTBITS, que hace un archivo CSV, luego traza el archivo CSV. Por ejemplo, aquí está el resultado de PLOTFILT 4 4: Los dos parámetros de PLOTFILT significan que habrá dos filtros en cascada del tipo descrito anteriormente. Los valores de 4 indican el número de bits de cambio para realizar la multiplicación por FF. Los dos valores FF son por lo tanto 1/16 en este caso. El rastro rojo es la respuesta de la etapa de la unidad, y es la cosa principal a mirar. Por ejemplo, esto le dice que si la entrada cambia instantáneamente, la salida del filtro combinado se establecerá en 90 del nuevo valor en 60 iteraciones. Si te importa el tiempo de solución de 95, entonces usted tiene que esperar alrededor de 73 iteraciones, y por 50 tiempo de solución sólo 26 iteraciones. El rastro verde le muestra la salida de una sola espiga de amplitud completa. Esto le da una idea de la supresión de ruido aleatorio. Parece que ninguna muestra causará más de un cambio de 2.5 en la salida. El rastro azul es dar una sensación subjetiva de lo que hace este filtro con el ruido blanco. Esto no es una prueba rigurosa, ya que no hay garantía de que exactamente el contenido de los números aleatorios elegidos como el ruido blanco de entrada para esta ejecución de PLOTFILT. Es sólo para darle una sensación áspera de cuánto será aplastado y lo suave que es. PLOTFILT, tal vez FILTBITS, y muchas otras cosas útiles, especialmente para el desarrollo de firmware PIC está disponible en la versión de software PIC Development Tools en mi página de descargas de software. Agregado acerca de la precisión numérica veo de los comentarios y ahora una nueva respuesta que hay interés en discutir el número de bits necesarios para implementar este filtro. Tenga en cuenta que la multiplicación por FF creará Log 2 (FF) nuevos bits por debajo del punto binario. En sistemas pequeños, FF se elige generalmente para ser 1/2 N de modo que esta multiplicación se realice realmente por un desplazamiento a la derecha de N bits. FILT es por lo tanto un entero de punto fijo. Tenga en cuenta que esto no cambia ninguna de las matemáticas desde el punto de vista de los procesadores. Por ejemplo, si está filtrando lecturas A / D de 10 bits y N 4 (FF 1/16), entonces necesita 4 bits de fracción por debajo de las lecturas A / D de enteros de 10 bits. Uno de los procesadores más, youd estar haciendo operaciones enteras de 16 bits debido a las lecturas de 10 bits A / D. En este caso, todavía puede hacer exactamente las mismas operaciones enteras de 16 bits, pero comience con las lecturas A / D a la izquierda desplazadas por 4 bits. El procesador no sabe la diferencia y no necesita. Hacer la matemática en todo enteros de 16 bits funciona si usted los considera 12,4 puntos fijos o enteros verdaderos de 16 bits (16,0 puntos fijos). En general, es necesario agregar N bits cada polo de filtro si no desea añadir ruido debido a la representación numérica. En el ejemplo anterior, el segundo filtro de dos tendría que tener 1044 18 bits para no perder información. En la práctica en una máquina de 8 bits que significa youd utilizar valores de 24 bits. Técnicamente sólo el segundo polo de dos necesitaría el valor más amplio, pero para la simplicidad del firmware usualmente utilizo la misma representación, y por lo tanto el mismo código, para todos los polos de un filtro. Normalmente escribo una subrutina o macro para realizar una operación de polo de filtro, y luego aplicarla a cada polo. Si una subrutina o macro depende de si los ciclos o la memoria del programa son más importantes en ese proyecto en particular. De cualquier manera, utilizo un cierto estado del rasguño para pasar NUEVO en la subrutina / macro, que pone al día FILT, pero también las cargas que en el mismo estado del rasguño que NUEVO estaba adentro. Esto hace fácil aplicar los postes múltiples puesto que el FILT actualizado de un poste es El NUEVO de la siguiente. Cuando una subrutina, es útil tener un puntero apuntan a FILT en el camino, que se actualiza justo después de FILT a la salida. De esta manera la subrutina opera automáticamente en filtros consecutivos en memoria si se llama varias veces. Con una macro usted no necesita un puntero puesto que usted pasa en la dirección para funcionar en cada iteración. Ejemplos de código Aquí hay un ejemplo de una macro como se describe anteriormente para un PIC 18: Y aquí hay una macro similar para un PIC 24 o dsPIC 30 o 33: Ambos ejemplos se implementan como macros utilizando mi preprocesador de ensamblador PIC. Que es más capaz que cualquiera de las instalaciones macro incorporadas. Clabacchio: Otro problema que debería haber mencionado es la implementación de firmware. Puede escribir una subrutina de filtro de paso bajo de un solo polo una vez, luego aplicarla varias veces. De hecho, por lo general escribo una subrutina de este tipo para tomar un puntero en la memoria al estado del filtro, a continuación, hacer avanzar el puntero para que pueda ser llamado en sucesión fácilmente para realizar filtros multipolares. Ndash Olin Lathrop Apr 20 12 at 15:03 1. Muchas gracias por sus respuestas - todas ellas. Decidí usar este filtro IIR, pero este filtro no se utiliza como un filtro LowPass estándar, ya que necesito valorar los valores promedio de los contadores y compararlos para detectar cambios en un determinado rango. Ya que estos Valores van de dimensiones muy diferentes dependiendo de Hardware que quería tomar un promedio para poder reaccionar a estos cambios específicos de hardware automáticamente. Ndash sensslen May 21 12 at 12:06 Si se puede vivir con la restricción de un poder de dos números de elementos a la media (es decir, 2,4,8,16,32 etc), entonces la división se puede hacer fácil y eficientemente en un De bajo rendimiento micro sin división dedicada, ya que se puede hacer como un cambio de bits. Cada turno a la derecha es una potencia de dos por ejemplo: El OP pensó que tenía dos problemas, dividiendo en un PIC16 y la memoria para su amortiguador de anillo. Esta respuesta muestra que la división no es difícil. Es cierto que no aborda el problema de la memoria, pero el sistema SE permite respuestas parciales, y los usuarios pueden tomar algo de cada respuesta por sí mismos, o incluso editar y combinar las respuestas de otros. Dado que algunas de las otras respuestas requieren una operación de división, son igualmente incompletas, ya que no muestran cómo lograr esto de manera eficiente en un PIC16. Ndash Martin Apr 20 12 at 13:01 Hay una respuesta para un verdadero filtro de media móvil (también conocido como filtro de caja) con menos requisitos de memoria, si no te importa el downsampling. Su llamado un filtro integrador-peine en cascada (CIC). La idea es que usted tiene un integrador que tomar las diferencias de más de un período de tiempo, y la clave de ahorro de memoria dispositivo es que mediante el muestreo, no tienes que almacenar todos los valores del integrador. Se puede implementar utilizando el pseudocódigo siguiente: Su longitud media móvil efectiva es decimationFactorstatesize, pero sólo necesita mantener alrededor de las muestras de estado. Obviamente, puede obtener un mejor rendimiento si su stateize y decimationFactor son potencias de 2, de modo que la división y los operadores de resto se sustituye por cambios y máscara-ands. Postscript: Estoy de acuerdo con Olin que siempre debe considerar simples filtros IIR antes de un filtro de media móvil. Si no necesita la frecuencia-nulos de un filtro de vagón, un filtro de paso bajo de 1 o 2 polos probablemente funcione bien. Por otro lado, si está filtrando para fines de decimación (tomando una entrada de alta tasa de muestreo y promediándola para su uso por un proceso de baja velocidad) entonces un filtro de CIC puede ser justo lo que está buscando. (Especialmente si se puede usar statesize1 y evitar el ringbuffer en conjunto con sólo un único valor de integrador anterior) Theres algunos análisis en profundidad de la matemática detrás de la utilización de la primera orden IIR filtro que Olin Lathrop ya ha descrito en el Digital Signal Processing stack exchange (Incluye muchas imágenes bonitas). La ecuación para este filtro IIR es: Esto se puede implementar usando sólo números enteros y sin división usando el siguiente código (podría necesitar un poco de depuración como estaba escribiendo desde la memoria.) Este filtro se aproxima a una media móvil de Los últimos K muestras estableciendo el valor de alfa a 1 / K. Hacer esto en el código precedente definiendo BITS a LOG2 (K), es decir para K 16 fijado BITS a 4, para K 4 fijado BITS a 2, etc. (Mal verificar el código enumerado aquí tan pronto como consiga un cambio y Edite esta respuesta si es necesario.) Respondió Jun 23 12 at 4:04 Heres un filtro de paso bajo de un solo polo (promedio móvil, con frecuencia de corte CutoffFrequency). Muy simple, muy rápido, funciona muy bien, y casi no hay sobrecarga de memoria. Nota: Todas las variables tienen un alcance más allá de la función de filtro, excepto la pasada en newInput Nota: Este es un filtro de una sola etapa. Múltiples etapas se pueden conectar en cascada para aumentar la nitidez del filtro. Si utiliza más de una etapa, tendrá que ajustar DecayFactor (en relación con la frecuencia de corte) para compensar. Y, obviamente, todo lo que necesita son las dos líneas colocadas en cualquier lugar, no necesitan su propia función. Este filtro tiene un tiempo de aceleración antes de que el promedio móvil represente el de la señal de entrada. Si necesita omitir ese tiempo de aceleración, sólo puede inicializar MovingAverage al primer valor de newInput en lugar de 0 y esperar que el primer newInput no sea un outlier. (CutoffFrequency / SampleRate) tiene un intervalo entre 0 y 0,5. DecayFactor es un valor entre 0 y 1, por lo general cerca de 1. Flotadores de precisión simple son lo suficientemente buenos para la mayoría de las cosas, sólo prefiero dobles. Si necesitas pegarte con enteros, puedes convertir DecayFactor y Factor de Amplitud en enteros fraccionarios, en los cuales el numerador se almacena como el entero, y el denominador es una potencia entera de 2 (así que puedes cambiar a la derecha como el número Denominador en vez de tener que dividir durante el bucle del filtro). Por ejemplo, si DecayFactor 0.99 y desea utilizar números enteros, puede establecer DecayFactor 0.99 65536 64881. Y luego, cada vez que multiplique por DecayFactor en su bucle de filtro, simplemente cambie el resultado 16. Para más información sobre esto, un excelente libro thats En línea, capítulo 19 sobre filtros recursivos: dspguide / ch19.htm PS Para el paradigma Moving Average, un enfoque diferente para establecer DecayFactor y AmplitudeFactor que puede ser más relevante para sus necesidades, digamos que desea que el anterior, alrededor de 6 elementos promediados juntos, haciéndolo discretamente, youd añadir 6 elementos y dividir por 6, por lo que Puede establecer el AmplitudeFactor a 1/6, y DecayFactor a (1.0 - AmplitudeFactor). Respondió May 14 12 at 22:55 Todo el mundo ha comentado a fondo sobre la utilidad de IIR vs FIR, y en la división de poder de dos. La identificación apenas tiene gusto de dar algunos detalles de la puesta en práctica. Lo siguiente funciona bien en pequeños microcontroladores sin FPU. No hay multiplicación, y si mantienes N una potencia de dos, toda la división es de un solo ciclo de desplazamiento de bits. Búfer de anillo FIR básico: guarda un buffer de ejecución de los últimos N valores, y una SUM corriente de todos los valores en el búfer. Cada vez que llega una nueva muestra, resta el valor más antiguo en el buffer de SUM, reemplázalo por el nuevo, añada la nueva muestra a SUM y SUM / N. Búfer de anillo IIR modificado: mantener una SUM corriente de los últimos N valores. Cada vez que llega una nueva muestra, SUM - SUM / N, agregue la nueva muestra, y la salida SUM / N. Si le estoy leyendo bien, usted está describiendo un filtro IIR de primer orden, el valor que está restar es el valor más antiguo que está cayendo, pero es el promedio de los valores anteriores. Los filtros IIR de primer orden pueden sin duda ser útiles, pero no estoy seguro de lo que quiere decir cuando sugiere que la salida es la misma para todas las señales periódicas. A una frecuencia de muestreo de 10KHz, alimentar una onda cuadrada de 100Hz en un filtro de caja de 20 etapas producirá una señal que se eleva uniformemente para 20 muestras, se sienta alto para 30, cae uniformemente para 20 muestras y se sienta bajo para 30. Un primer orden Filtro IIR. Ndash supercat Aug 28 13 a las 15:31 producirá una onda que comienza a subir bruscamente y gradualmente se nivela cerca (pero no en) el máximo de entrada, luego empieza a caer bruscamente y gradualmente se nivela cerca (pero no) del mínimo de entrada. Comportamiento muy diferente. Ndash supercat August 28 13 at 15:32 Un problema es que un simple promedio móvil puede o no ser útil. Con un filtro IIR, puede obtener un filtro agradable con relativamente pocos calcs. La FIR que usted describe sólo puede darle un rectángulo en el tiempo - un sinc en freq - y no puede administrar los lóbulos laterales. Puede ser bien vale la pena para lanzar en un número entero multiplica para que sea una buena sintonía sintonizable FIR si se puede ahorrar las garrapatas del reloj. Ndash Scott Seidman: No hay necesidad de multiplicar si uno simplemente tiene cada etapa de la FIR o la salida de la media de la entrada a esa etapa y su valor almacenado anterior, y luego almacenar la entrada (si se tiene El rango numérico, se podría usar la suma en lugar de la media). Si ese filtro es mejor que un filtro de caja depende de la aplicación (la respuesta de paso de un filtro de caja con un retardo total de 1ms, por ejemplo, tendrá un pico d2 / dt desagradable cuando el cambio de entrada, y 1ms más tarde, pero tendrá El mínimo posible d / dt para un filtro con un retraso total de 1ms). Ndash supercat Como dijo mikeselectricstuff, si realmente necesita reducir sus necesidades de memoria, y no te importa su respuesta al impulso que es un exponencial (en lugar de un pulso rectangular), me gustaría ir para un filtro de media móvil exponencial . Los uso ampliamente. Con ese tipo de filtro, no necesita ningún buffer. Usted no tiene que almacenar N muestras pasadas. Solo uno. Por lo tanto, sus requisitos de memoria se redujo por un factor de N. También, no necesita ninguna división para eso. Sólo multiplicaciones. Si tiene acceso a aritmética de punto flotante, use multiplicaciones de coma flotante. De lo contrario, haga multiplicaciones enteras y desplaza hacia la derecha. Sin embargo, estamos en 2012, y yo recomendaría que utilice compiladores (y MCUs) que le permiten trabajar con números de coma flotante. Además de ser más eficiente de la memoria y más rápido (usted no tiene que actualizar los elementos en cualquier búfer circular), yo diría que es también más natural. Porque una respuesta de impulso exponencial coincide mejor con la forma en que se comporta la naturaleza, en la mayoría de los casos. Un problema con el filtro IIR como casi tocado por olin y supercat pero aparentemente ignorado por otros es que el redondeo hacia abajo introduce cierta imprecisión (y potencialmente sesgo / truncamiento). Suponiendo que N es una potencia de dos, y sólo se utiliza la aritmética entera, el turno de derecha elimina sistemáticamente los LSB de la nueva muestra. Eso significa que la duración de la serie nunca podría ser, el promedio nunca tendrá en cuenta. Por ejemplo, supongamos una serie que disminuye lentamente (8, 8, 8, 7, 7, 7, 7, 6, 6) y asuma que el promedio es realmente 8 al principio. La muestra del puño 7 llevará la media a 7, independientemente de la resistencia del filtro. Sólo para una muestra. La misma historia para 6, etc. Ahora piensa en lo opuesto. La serie sube. El promedio se mantendrá en 7 para siempre, hasta que la muestra es lo suficientemente grande como para que cambie. Por supuesto, puede corregir el sesgo añadiendo 1 / 2N / 2, pero eso no resolverá realmente el problema de precisión. En ese caso la serie decreciente permanecerá para siempre en 8 hasta que la muestra sea 8-1 / 2 (N / 2). Para N4 por ejemplo, cualquier muestra por encima de cero mantendrá el promedio sin cambios. Creo que una solución para eso implicaría mantener un acumulador de los LSB perdidos. Pero no lo hice lo suficientemente lejos para tener el código listo, y no estoy seguro de que no perjudicaría la potencia IIR en algunos otros casos de series (por ejemplo, si 7,9,7,9 promedio a 8 entonces). Olin, su cascada de dos etapas también necesitaría alguna explicación. ¿Se refiere a la celebración de dos valores medios con el resultado de la primera alimentado en el segundo en cada iteración. ¿Cuál es el beneficio de este
Características empíricas de las estrategias comerciales dinámicas en el caso de los hedge funds pdf
Promedios móviles Forex